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Abstract

Smart home or smart building design relies on the combination of several
hard and software new technologies. Concerning the software part, machine
learning algorithms play a pivotal role as they allow the system to make
autonomous decisions.

In this report, we review several machine learning techniques that have
been tested and implemented in smart buildings. We discuss their benefits
and limitations through several use cases.

1 Introduction

Smart buildings is an applicative field which aims at designing intelligent systems
that can control and manage buildings with as little human supervision as possible.
Any type of building is eligible for such technologies: homes, offices, factories,
airports, schools and so on. Each building type may have its own specificities but
the core idea is the same. In short, the building needs to be equipped with sensors
and actuators. Each such device must be connected to a central server through
an appropriate network technology and protocol. Finally, a software is run on the
server. The software task is to collect all data coming from the sensors, analyze
them and produce decisions as to when and how actuators should be triggered.
Concerning the software aspects of smart buildings, artificial intelligence algo-
rithms are key components of the decision system. Among the vast artificial intel-
ligence literature, machine learning has proved to solve complex decision making
tasks with remarkable accuracy. Machine learning is a research field that attempts
to reproduce learning principles from animal psychology into programming code.
In general, the machine is given a dataset containing input-decision pairs. The
algorithm exploits these data to predict decisions when new inputs are given.



In this report, we review state-of-the-art machine learning techniques that have
been proposed and tested in the context of smart buildings. We start with a quick
reminder on machine learning paradigms and recall several notions in this field.
Since smart building systems usually require to solve several tasks, we review
several use cases separately. The rest of the document is therefore organized with
respect to each use case.

Smart factories and technical building management are two fundamental ques-
tions addressed as part the INCASE project. Although some of these use cases
are not always directly related to these questions the devices implemented may
provide information allowing to address other tasks. For instance, INCASE is in-
terested in power consumption monitoring but power consumption can be useful
to detect abnormal behavior within the building. In addition, all intelligent sys-
tems are built using the same machine learning building blocks, therefore all the
solutions discussed in this report can be transposed to INCASE related problems.
For instance, we discuss elder people fall detection using imaging sensors. The
same technology can be used track the activity of staff members inside a factory
and provide assistance to them. It can also be argued that visual understanding
algorithms are key elements for fall detection in videos. Such algorithms can be
used as well to detect motions helping us to regulate lights, heating and so on in
a building.

2 Machine learning basics

Generally speaking, machine learning aims at producing algorithms that have a
predictive power. One can reach that goal by exploiting data and optimizing an
objective function that features the impact of prediction errors as well as prediction
successes. As said in the introduction, the mathematical and algorithmic mecha-
nisms that are employed in machine learning are inspired from learning principles
in animal psychology. This means that the decisions of the systems are compared
to the correct ones and that the algorithm updates itself so as to avoid reproducing
incorrect decisions in the future.

The learned models allow to solve multiple tasks that can give the feeling that
the machine has its own reasoning capabilities. Actually, this is of course fictional.
All the decisions produced by the machine are direct consequences of humanly
programmed computation. In other words, machines do not make decisions on
their own they just obey code lines.

In this section, we review machine learning paradigms and recall important
related notions. For more comprehensive presentations of machine learning, refer-
ence books such as [2, 16] may be browsed.



2.1 Supervised learning

A supervised learning problem starts with a dataset. Each data in this set is a
pair
(X(Z)7 y(2)> :

for i from 1 to n. In this pair, x is called an example and y® is called an output
(or decision). The algorithm must learn the functional relation f; between any
example x and its outputs y = fp (x).

Example 1. Suppose a customer applies for a credit card in a bank. The bank
has some personal information about the customer (salary, account balance, total
debt, age, gender and so on). This set of information pieces is an example x. The
corresponding output is binary (allow or deny the card)

Each piece of information inside an example is called a feature. The space
where examples live is usually referred to as feature space. Most of the time,
this space is a vector space and we can use linear algebra calculus. Sometimes
examples contain categorical data like the customer gender in our example. How-
ever, categorical data can be embedded into a vector space. Consequently, we will
make the assumption that any example x is a vector in R? in the remainder of this
document.

The integer p is the dimensionality of the examples while n is the number of
examples. In modern machine learning, a famous bottleneck is termed big data.
This means that n is very large and typically, the dataset cannot be loaded on a
single computer memory. When p is large, one speaks of tall data.

Supervised learning is subdivided into two categories: classification and regres-
sion. Classification deals with categorical outputs like the accept or deny decision.
In this case, y live in a set C that is deprived of any mathematical structure. Re-
gression deals with continuous outputs living in a vector space. For instance, if
the banks wishes to determine the maximal mortgage that can be granted to the
customer, then this becomes a regression task.

Since our goal is to determine function fy, the solution space has an infinite
dimensionality. Most of the time, people resort to parametric models, that is,
candidate functions are in bijective correspondence with a parameter vector 8 € ©
and the space © has finite dimensionality. Even if this simplifies the problem, this
latter is still ill posed in the sense that they are infinitely many functions fg such
that

fo (X(i)) = y(i), V1.
This established fact implies that learning algorithms must resort to additional
constraint to converge to a solution. Usually, the chosen parametric model will not



allow the estimated function f to have chaotic variations. The machine learner
has done a good job when a trade-off has been found between predictive function
complexity and data fit. An excessive data fit is a situation called overfitting while
an excessively simple decision function is a situation called underfitting.

2.2 Unsupervised learning

In the unsupervised learning paradigm, the learner is also given a dataset, but the
dataset contains examples only. The outputs are missing. In the worst case, the
number of classes into which examples must be sorted is not known either.

The only available information is proximity between examples. Indeed, if two
examples are close in the feature space, the usual assumption is that they belong
to the same class. When data points seem to aggregate around an attraction pole,
they supposedly are member of the same class. This problem is also known as
clustering.

Of course, unsupervised learning is doomed to perform poorly as compared to
supervised learning. Unfortunately, acquiring labeled data (examples with out-
puts) is costly and difficult. Imagine someone wants to design a medical image
processing software that can detect cancer signs. Only physicians have the appro-
priate skills to assign labels to such examples. Consequently, one needs to employ
expensive staff for a boring repetitive task.

In many applicative context, only a subset of the dataset is labeled. This
framework is known as semi-supervised learning. Another possibility is to give
the learner a budget of n’ < n examples for which he, or she, is given the correct
output. In this setting, the learner queries the environment and therefore this
paradigm is called active learning.

2.3 Reinforcement learning

The last paradigm that we evoke in this report is reinforcement learning [22]. This
paradigm is dramatically different as compared to the previously mentioned ones.
In this setting, the learner is not given a dataset, but it will be possible for him
to build one of its own to some extent. Instead the learner is given the possibility
to try any input and obtain a reward in response to that input. The goal here is
also to learn a function, but this function is meant to lead a commanded system
to a desired state. The learned function is often referred to as the policy function.
It should drive the system so that the desired state is achieved in the smallest
number of moves possible.

The motives behind reinforcement learning is connected to control theory. This
paradigm is especially interesting in the smart building context for buildings con-
tain several controllable systems that we wish to regulate automatically (heating,
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air conditioned, lights, door access, etc.). Reinforcement learning is thus an inter-
esting perspective as part of the INCASE project.

3 Anomaly detection

One of the most important goals of the INCASE project is to equip factories or
technical buildings with many sensors and monitoring technologies. Suppose for
simplicity that each sensor delivers a real 1D signal and that one records each signal
for a given time span ty. Suppose also we have m sensors. We can concatenate all
these times series in a m x ¢y matrix X @ If we collect several instances of such a
matrices, we can build an unlabeled dataset.

Although this is not the prime goal of these sensors, a general profile can be
learned from this dataset. When we observe a new instance X that is significantly
different from previously seen ones, then we can deduce that something potentially
dangerous is happening. For instance, if power consumption is twice bigger than
usual for several minutes then maybe a machine is malfunctioning and this could
cause a mechanical accident or a fire outbreak.

In [21], the author processes daily electrical power consumption only. He ex-
tracts features from each times series (average consumption, peak demand, etc.).
The feature vectors are then sorted with respect to day types (Monday, Tuesday,
and so on). Afterwards, outlier data points are sought inside each subset feature
by feature. A statistic is computed to compare the absolute difference between
the maximal feature value and its mean value. The outlier identification is per-
formed by comparing the statistic to a critical value designed for this test [20] when
data points are normally distributed. This test is known as generalized extreme
studentized deviate (GESD).

A similar approach is introduced by Li et al. [14]. The extracted features are
mean daily-energy consumption, peak daily consumption and two parameters that
are part of an autoregressive model fitted to the time series. Outliers are identified
among feature vectors using GESD when the sample size is large enough. When it
is not, another method based on ordered statistics is used. This method is known a
Q-test and relies data point discrepancies analysis (after they have been re-ordered
in ascending order). The authors then uses Fisher linear discriminant analysis to
classify each feature vector into a day type (week day or working/non-working
day). Outlier examples are removed from the training dataset.

In [5], Chicco surveys different clustering algorithms as well as feature extrac-
tion methods from power consumption signals. However, the goal of the approach
is to find groups of customers instead day groups.

Another possibility to detect anomalies is to mine for abrupt changes inside the
signals. To the best of our knowledge, this lead does seem have been paid much



attention in the smart building literature. There are however many approaches
proposed in the machine learning and signal processing literature that could serve
this purpose.

A mixture of experts [12] model could be fit to each signal. This statistical
model can fit signals undergoing different regimes. A latent random variable rep-
resents to which regime each signal sample belongs to. Each regime has its own
model and parameters. All these parameters (including the mixture ones) can be
learned using the expectation-maximization (EM) algorithm [7].

In a recent paper [4], Chamrouki introduces an approach that can model abrupt
changes and cluster signals. Again, a mixture model is used and each mixture com-
ponent represents a cluster. Within each cluster, a piecewise polynomial regression
model is used to fit signals. The author also uses adapted versions of EM to learn
jointly all the model parameters.

4 Activity recognition

The devices that can be installed in a factory or a technical building, as proposed in
INCASE, can also be used for human activity recognition. Many kinds of activities
can be tracked. As part of smart factories, specific tasks of workers can be identified
to provide them with appropriate assistance. For instance, if the system is able
to detect that the worker is trying to assemble to two pieces together, then a
pre-calculated torque can be applied to help him (or her) to tighten a fastening
screw. A more common task is also human presence detection. Such information
is important for security (production may be stopped if someone is inside a given
area) and for quality engineering (presence of people may corrupt the quality of
the production in clean rooms).

In this section, we provide a quick overview of the human detection use case.
First, let us stress that most approaches are non statistical and learning free. They
resort on deterministic electrical engineering solutions. For instance, a simple
solution is to equip building users with an RFID chip [13]. If RFID antennas are
deployed in the building, user positions may be easily tracked. The drawback of
this approach is that building meshing is costly and users have to accept carrying
chips.

Most of the time, occupancy detection requires anyway the installation of spe-
cific sensors. Whether the final objective is energy saving (as in INCASE) or
not, low consumption sensors are preferred. In this vein, passive infrared sensors
are an interesting solution. Human bodies emit photons in the infrared domain
while non-organic matter do generally not. In particular, hot objects (like heaters)
emit infrared photons therefore sensors should be placed accordingly to avoid false
positives.



Agarwal et al. [1] introduce a human presence detection approach relying on
passive infrared sensor signals. They also use switches to detect if an office door is
open or not. When open, human presence is assumed. When closed, the decision
is made from passive infrared sensor measurements. To avoid triggering a positive
detection too soon, the measurements are analyzed after the first pulse plus six
seconds. Pulse patterns from the sixth second to the eighth second are then used to
decide on the office occupancy. From an algorithmic point of view, this approach
is simplistic and many machine learning algorithms could be used to improve
detection accuracy provided that one can access raw input data instead of binary
data. Indeed, binary pulses are obtained after comparing the raw signal to a
predefined threshold. The value of this threshold could be learned automatically as
part of a supervised technique such as support vector machines, logistic regression
or linear discriminant analysis.

Other low cost presence sensors examples are pressure sensors to detect chair
occupancy, temperature, humidity, CO, and acoustic sensors [18]. A slightly more
costly solution consists in deploying a network of low resolution cameras. The cam-
eras need to be low resolution and produce images at low frequency for both cost
and power consumption reasons. The images also need to be processed and clas-
sified in an embedded computing system. In [10], the authors uses such a camera
network. Images are processed so that background is suppressed and occupants
thus produce blobs in the images. For indoor cameras, background suppression
is not a costly operation. Blobs are groups of connected pixels with a signifi-
cantly high average value. The authors also centralize occupancy data and try to
learn dependencies between occupancies of neighbor rooms using a multivariate
Gaussian model.

Note that temporal dependencies are also interesting to assess as done in [15]
where a hidden Markov model is used to that end. Dodier et al. [8] also take
temporal dependencies into account as part of a Bayesian network. They use
several redundant passive infrared sensors. The state transition probabilities are
learned in a frequentist fashion. The architecture of the network is not learned
but is derived from an analysis of causes and effects relations between the random
variables.

More information on this topic can be found in the survey by Nguyen and
Aiello [19].

Outside the smart building literature, human detection has also raised a lot of
interest. In particular, human detection in images and video is a vivid research
topic. A recent survey [17] covers the corresponding state-of-the-art. The ma-
jor problem with the approaches presented in this community is that they rely
on high resolution cameras whose specifications do not meet our energy saving
requirements.



In the computer vision community, deep learning algorithms have proved to
obtain remarkable level of accuracy in scene understanding tasks. In this family
of machine learning algorithms, popular models for video processing are recurrent
neural networks (RNN) and long-short term machines networks (LSTM) [3, 9].
These models are adapted for processing time sequences. Roughly speaking, they
are neural networks implemented in a recursive fashion meaning that the output
of the network at time ¢ is the image of a linear combination of recent output
history through a non-linearity (which is usually a sigmoid function). The weights
involved in the linear combination encode the influence of past decision in the
present one. The network could be unrolled across time to yield a vanilla neural
network but the parameters of this unrolled networks would be tied.

Although these algorithms are very appealing in their performance promises
they usually demand high resolution images, large training datasets and consid-
erable computation resources. Nonetheless, there are reasons to believe that deep
nets is an interesting perspective for smart building too:

o most of the computation effort is paid at training time not at test time.
Training can be performed on standard machine and the trained network
may be uploaded to the embedded system attached to the low cost camera.

e the occupancy detection task is much simpler than visual understanding
tasks studied in computer vision. Smaller resolution images and smaller
datasets may be enough for this task.

5 Speech recognition for command design

In this section, we provide a few useful references dealing with natural language
processing and, more precisely, on speech recognition. Speech recognition has
many potential applications for smart factories and other INCASE related topics.
For instance, the production could be supervised using voice commands which
much more ergonomic for a human operator than clicking on graphical interfaces
or typing commands in a console.

This is the only topic discussed in this report for which the industrial context
does not imply particular specifications as compared to other contexts. In factories,
there may be an increased need for robustness as this is a very noisy environment.
Again, the algorithms should not consume too much energy and computation
resources. But these two are not really limitative and the core ideas of natural
language processing do apply.

Speech recognition is a multi-level pattern recognition challenge. The input
data is a 1D signal. Depending on the semantic complexity of the information



encoded in this signal, the goal of the machine may be to identify words or sen-
tences. Each word is itself composed of a set of phonemes which are basic sounds
that human beings can produce. Each phoneme is a small time series containing
several signal samples. Depending on the sampling frequency and on the speaker,
phonemes (and consequently words) have variable lengths.

The signal processing community has produced several contributions allowing
to compute feature vectors from raw signals. These feature vectors are an inter-
mediate representation of the data. If each training example x* is turned into
a feature vector z(¥, then usual supervised learning techniques can be employed
on the dataset {(z(i), c(i))}?: The signal processing contribution relies on the
invariance of the feature vectors to speaker variability and background noise.

Before the deep learning breakthrough, the most popular feature extraction
approach for speech signals was Mel Frequency Cepstral Coefficients (MFCCs) [6].
This method starts with a short term Fourier analysis, supposing that phonemes
have approximately constant time span. Each local Fourier representation is given
as input to a filter bank to evaluate the energy carried along different frequency
intervals. Human cochlea (an organ in the ear) cannot disambiguate nearby fre-
quencies. The filter bank mimics the human hearing system. This disambiguation
difficulty is more prominent in high frequencies therefore the frequency interval
length are not constant. Afterwards, one must take the log of filter output ener-
gies. This is also motivated by the human hearing system for which loudness is not
in linear scale. Finally, we take the discrete cosine transform of the log energies
to decorrelate the feature vector entries.

Observe that an MFCC feature vector represents only one phoneme. Since
words are phoneme sequences, one needs a time dependency model. The standard
choice is hidden Markov models. In a more recent approach, Graves et al. use
MFCC feature vectors on deep recurrent neural network. This network combines
the convolutional spirit of deep nets with the recurrent aspect of LSTMs.

Nowadays, some deep learning algorithms have outperformed MFCC based
approaches on a number of challenging datasets. Hinton et al. [11] use a deep belief
net (DBN) on feature vectors that are filter bank outputs. This net is obtained by
stacking generative probabilistic models known as restricted Boltzmann machines
(RBMs). This net can learn a feature representation on its own. Its parameters are
first obtained in an unsupervised training phase called pre-training. The output
of the DBN is then connected to a deep neural net which is trained in a supervised
fashion as usual.

In summary, the main perspective of speech recognition for the problems ad-
dressed as part the INCASE project is just to adapt existing tools in the machine
learning literature and not to develop a new one.
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Automatic building regulation

Activity detection discussed in section 4 is often a building block of automatic
building regulation which is a higher level task. There are many things that can
be regulated in a building but most of the reported work in this field focus on
heating, air conditioned and ventilation

7

Conclusions et perspectives

In this report, we have highlighted that machine learning techniques have potential
benefits in almost every aspects of smart factories and buildings.
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