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Reasoning under uncertainty

Why do we need uncertainty models?

@ Aleatory nature of the problem :

Light source — sensing device

Laser[ | e eeoe IPhotodiode

@ The world is too complex :

Trajectory of a particle in a gas?

@ There is missing information :

Missing entries in a training example x = [1.2;7;0.4]
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Reasoning under uncertainty

Probabilities

o Limiting frequency of occurrences of some event.

@ Subjective degree of belief of an event being true.

Probability that patient X is sick given observed symptoms

@ — Unified mathematical framework : probability measures.
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Reasoning under uncertainty

Can probabilities cover any situation involving uncertainty ?

o Content of the urn revealed except for one marble!

®e 6 O o O
® 6 O O 7

@ Let X denote the color of a randomly picked marble.
o Let Z denote the color of the last marble.
o What is the probability of X =e7

P(X=e)=P(X=e|Z=e)P(Z=9)+ P(X=9e|Z=0)P(Z=0)
0.6 0.5

(Total Probability Theorem)
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Reasoning under uncertainty

Probabilistic solutions

@ Naive idea : choose a uniform distribution for Z ~ Ber (%)

— inconsistent probability value : P(X = o) = 0.55.
@ Hierarchical idea : investigate candidate distributions for X :
X~ p1 =Ber(0.5) or X~ puo=Ber(0.6)

Define a variable H taking values in the set {u1; pu2} and H ~ Ber (0).
— still need to set a parameter.

o Conservative idea : use lower and upper bounds :

min {1 (#); 2 (o)} < P(X'= o) <max{pu(e);p2(e)}

@ The belief function idea : use probabilities with a different hardcore
logic.
— 100% neutral while fitting data.
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Reasoning under uncertainty

From Probabilities to Belief functions [Dempster 67, Shafer 76, Dempster 08]

@ Suppose an assertion B € og is described by the following triplet of
epistemic states :
{true; false; don't know} .

@ Let us assign probabilities (u, v, w) to these states and v+ v+ w=1.

Obviously, B is described by the triplet (v, u, w).

@ The set function mapping B to probabilities v is denoted bel and is
called a belief function.

The plausibility function plis given by

pl(B)=1—bel(B)=1—v=u+w.

@ Our ignorance on B'is featured by w=1— u— v= pl(B) — bel (B)!
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Reasoning under uncertainty

Belief functions

@ For any B/ C B, B being true logically implies that B is true.

@ A convenient representation is given by the mass function m :

bel(B)= > m(B). (1)

B'CB

e m(B) is the support given to B based on available evidence that
cannot be refined to subsets of B and

> m(B)=1 and m(B)>0,YBCO. (2)
BCO
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Reasoning under uncertainty

Belief functions and the marbles

@ Assign the following (u,v,w) triplet to H= p :
{H=m}—(0;0;1) (3)

— In the continuous case, the wine/water example also features the
ability of belief functions to fit imprecise data.
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Reasoning under uncertainty

Challenge : fit imprecise data to models

@ Example 1 : Let I, denote the value of a grayscale image at pixel p.
@ Let a, denote the sensor value at pixel p.

e For any positive 7 < 7/, Iy € [ap — T; ap + 7] is less likely than
I € ap — 75 ap + 7]

Choose a non-decreasing function F w.r.t. 7 and obtain a mass function
with positive masses assigned to nested intervals [ap — 7; ap + 7],

mp : model for the pixel value
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Reasoning under uncertainty

Challenge : fit imprecise data to models

[BELIEF 2012

Take the set of mass functions in the neighborhood of pixel p :

Conflict K = Edge detector
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Reasoning under uncertainty

Challenge : fit imprecise data to models

@ Example 2 : Let I'; denote the output predicted by a 1-vs-all
probabilistic classifier.

@ Suppose © = {y1;...;ye} is the set of classes.
o [;is a random set, for instance the 1st classifier returns

either y1 or {y2;...;ye}

@ [;is an ill known random variable on © and induces a probability
distribution on a sub-o-field, i.e. a belief function on ©.
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Reasoning under uncertainty

Where do belief functions live ? Where do mass functions live ?

@ Let mp denote the (categorical) mass function encoding the
information X € B, i.e. mg(B) = 1.

@ The set of mass functions M (mass space) is the simplex spanned by
the categorical mass functions.

m(©)

me

m({a})

M{b} M{a}

m ({b})
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Reasoning under uncertainty

Structures for M

@ a partial order C — order theoretic structure,
@ a distance d — metric space structure,

@ a combination rule x — algebraic structure.

Problem

Get consistent results across structure types
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Order theoretic structures for belief functions

) HDR defense 07/12/2017 25 / 50



Order theoretic structures for belief functions

M as a partially ordered set
@ Does m; = %m{a} + %m{b} convey more information than
1 i 1
m2 = 3Mia) + 3M(p} +3me

Example :
m Ep/ my < p/l (B) < p/2 (B) ,VB co. (4)
me
ma
Spi(mz) ={m:mCp my}
M{b} m{ay
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Order theoretic structures for belief functions

Pre-orders for a family A = {my, ..., my} of mass functions

@ How does each mass function contribute to the family inconsistency ?
mo

outlier mass function

1
g(ml) — é——l Z ’i{m;;mj}v (5)

m;e A\{m;}

if there is at least one pair with Ky, my > 0.
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[IJAR 2011]

o Take two disjoints sets A and B.
o If me A, then

m=(1—x)ms+xmg or m=(1—x)mpg+ xmg.

— & (my;) is linear w.r.t. r (ratio of those functions supporting A) and does
not depend on /.

(not achieved by
[Martin 2008] or
[Schubert 2010])

02 04 o6 o8 i
r: proportion of functions supporting set A
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Metric space structures for belief functions
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Metric space structures for belief functions

M as a metric space

@ How far away are my and mp = %m{a} + %m@ ?

Example :
Ao (1, m2) = = | S |k (B) — ph (B) |* " (6)
P | Bgce
me
R’ {m D dpi (m, ma) = %}
mie) mia
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Metric space structures for belief functions
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Metric space structures for belief functions

M as both a metric space and a partially ordered set
@ To what extent C and d carry compatible attributes of M 7

@ Notion of consistency

[IJAR 2016] (with S. Destercke)

d is C-compatible if for any mass functions my, my and ms such that
m1 C my C m3, we have :

max{d(ml,mz);d(mz,mg)} S d(ml,m3), (7)

— formalization of principles from [Jousselme 2012]
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Metric space structures for belief functions

M as both a metric space and a partially ordered set

[IJAR 2016] (with S. Destercke)

Several consistency results, e.g. dpx is Cp-compatible (k < 00).

me

m3
2

: ":. mo

L4 >

mypy e myea
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Metric space structures for belief functions

M as both a metric space and a partially ordered set

[IJAR 2016] (with S. Destercke)

Consistency is useful for belief function approximation
@ Problem : find m, € R s.t.

(i) m, approximates m,
(i) m, is more informative than m.

@ Solution : use distance d,,; which is consistent with Cp :

m, = argmin dy (m,m’)
m' €RNSp(m)

o Guarantee : my is a maximal inner approximation :
For any m" € RN Sp/(m), we have m, Ly m'.
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Algebraic structures for belief fu

M
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Algebraic structures for belief functions

M as a magma

@ One just needs to endow M with some binary operation (or
combination rule)

MxM— M,

(ml, ITIQ) — M1 * Mmoy. (8)

~ e Mo

my x mp
M{by M{a}
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Algebraic structures for belief functions

M as a magma

@ Example : the unnormalized version of Dempster's rule, i.e. the
conjunctive rule ©

mi@mo (E) :Z m (A) mg(B), (9)

A,BCO,
ANB=E

M as a monoid

@ Monoid = Magma with an associative rule and a neutral element

@ Also true for @ : mg is the neutral element and associativity holds.
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Algebraic structures for belief functions

M as a magma + idempotence

@ How to cautiously combine mass functions while ensuring increased
informative content?

[BELIEF 2016] (with S. Destercke)

miMmy = argmin  d(m, mg). (10)
meSp,(ml)ﬁSp,(mg)

me
L]
my
..
e IM>
mq 'l mo 1
¢ 3
M{by miay
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Algebraic structures for belief functions

M as a magma + idempotence

[BELIEF 2016] (with S. Destercke)

Features of rule 1M
operator condition for use commutativity | associativity | idempotence | neutral
element
® none yes yes no me
[Smets 90]
&) m@2 (0) <1 yes yes no me
[Dempster 67]
® m1 (©) >0 and m2 (©) >0 yes yes yes none
[Denoeux 08]
mn none yes quasi yes me
[BELIEF 2016]
o

[IJAR 2018] (with S. Destercke)
— an idempotent distance based disjunctive rule.
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Algebraic structures for belief fu
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Algebraic structures for belief functions

M as both a monoid and a metric space
@ To what extent x and d carry compatible attributes of M ?

@ Another notion of consistency is needed

[IJAR 2014 + IEEE TC 2016] (M. Loudahi's PhD)

d is consistent w.r.t. x if for any mass functions my, my and ms on © :

d(ml*mg,mz*mg,) < d(ml,mz). (11)

me

M{b} M{a}
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M as both a monoid and a metric space

[IJAR 2014 + IEEE TC 2016] (M. Loudahi's PhD)

Several results proving distance/rule consistencies.

Example :

@ map each mass function m to its Dempsterian matrix D
@ Each column of D is m@mpg for some B C ©.

o Define d(mi, m) = £ ||D1 — D2|;.

@ The metric d is consistent with @.
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Conclusions and future research directions

Conclusions

@ Belief functions provide a large spectrum of models for reasoning
under uncertainty.

@ We use them when there is ignorance (misspecified priors).

@ Downside : greater time and memory complexities and more subtle
calculus rules.

@ 3 selected contributions :

Proved which distance agrees with which combination rule. )

Proved which distance agrees with which partial order. )

Introduced a new rule that agrees with the least commitment principle. J
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Conclusions and future research directions

Research directions

@ Structure of the mass space

Open question

Consistency with both a partial order and a combination rule?

Open question

What about consistency between metrics and specificity pre-orders?

@ Applications of belief functions or imprecise probabilities to signal and
image processing.

Under preparation

An upper probability model for pixel values.

— What's new ? It takes the sensor technology into account.
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Conclusions and future research directions

Research directions

@ Applications of belief functions or imprecise probabilities to machine
learning.

Use behavior based combination [Pichon et al. 2014] to combine classifiers
(in the wake of M. Albardan’s PhD).

m : 1 vs all classifier output Mmeta Classifier performances on
a validation set

Mrec (B) = > m(A) X Mmeta (H) . (12)
ACO,HCS
JTa(s)=B

seH
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Conclusions and future research directions

Research directions (long term)

@ Belief functions and knowledge representation in Al.

Open question

Can we achieve evidence deletion ?

Define a pair of rules for insertion/deletion of evidence.
me
L, @
3
ma
(2 >
M{b} M{a}
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Conclusions and future research directions

Thank you for your attention.
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Appendices

M as a pre-ordered set
@ Inconsistency pre-order : does m; = %m{a} + %m{b} encode less
consistent information than my = %m{a} + %m{ayb} ?
Example :

=(m) = max pl({a}) (13)

=(m) = 3 while =(mp) = 1.

me

(2 >

M{b} M{a}
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Appendices

M as a pre-ordered set
@ Specificity : do probability masses in m; support large (imprecise)
subsets as compared to my ?

Example :
Card (m) = Z m(B) |B| (14)
BCO
B0

Card (m) = 1 while Card (my) = 1.5.

me

—[\ {m: Card (m) = 1.5}

L2 L

M{b} M{a}
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Appendices

Order theoretic and algebraic structures for M

m = mi*my < m T, mo. (15)
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Appendices

Medical image processing (C. Feudjio's PhD) : Mammogram segmentation

ML

Background
removal

Pectoral muscle

removal

Mammogram

Dense tissues
segmentation
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Appendices

Medical image processing (C. Feudjio's PhD) : Mammogram segmentation

@ Goal : prioritize patients (dense tissue ratio is correlated with cancer
risk)

@ 2 first steps : (spatial) Fuzzy C-means + pre and post-processing.

pID D ID

Correct edge points achieve maximal gradient norm among pixels the
search segment (in green)
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Appendices

Medical image processing (C. Feudjio's PhD) : Mammogram segmentation

@ Goal : prioritize patients (dense tissue ratio is correlated with cancer
risk)

@ 2 first steps : (spatial) Fuzzy C-means + pre and post-processing.

Tangent f
line of

preceding
contour

points ,

/Contour
/ deviation

Tangent
line of
following

Curvature thresholding + similar contour post-processing
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Appendices

Medical image processing (C. Feudjio's PhD) : Mammogram segmentation

@ Final step : histogram specification + threshold.

ML

Gamma corrections as candidate transports
Obj. func. : Wasserstein dist. + regularizer based on HoG features
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Appendices

Machine Learning (M. Albardan’s PhD) : Classifier combination

@ Goal : alleviate the burden of choosing among equally appealing
classification algorithms and take the lot!

Input

[ Classifier 1 ] [ Classifier 2 ] [ Classifier 3 ]

Combined output
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Appendices

Machine Learning (M. Albardan’s PhD) : Classifier combination

@ ldea : Use classification performances to combine classifiers

@ Performances are evaluated on a validation set in the form of
confusion matrices.

@ Using these matrices, we have access to
P(true class|k™ classifier output) .

o We need
P (true class|all classifier outputs)
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Appendices

Machine Learning (M. Albardan’s PhD) : Classifier combination
@ Solutions :
e Assume classifier output cond. indep. and apply Bayes theorem.
— Application to physiological signal classification (collab. with L.
Sparrow)
e Propose a parametric model of P (true class|all classifier outputs) as an
aggregation of the distributions derived from confusion matrices :

— t-norm + renormalization.
— copula function (collab. with B. Guedj)
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Appendices

Elec. Engineering (collab. with H. Wang and S. Li) : Wind turbine control

o Goal : maximize energy production of a wind turbine

@ For a given wind speed, there is an optimal turbine speed for power
production.

Solution : a controller for rotor currents based on sliding mode
control.

Sliding mode control use a discontinuous control signal to confine
state trajectories to a desirable manifold (e.g. one that has an
equilibrium state point).
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