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Salient career facts
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Salient career facts

Salient career facts : Teaching activities
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Salient career facts
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Reasoning under uncertainty

Why do we need uncertainty models ?
Aleatory nature of the problem :

Light source −→ sensing device

The world is too complex :

Trajectory of a particle in a gas ?

There is missing information :

Missing entries in a training example x = [1.2; ?; 0.4]
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Reasoning under uncertainty

Probabilities
Limiting frequency of occurrences of some event.

Subjective degree of belief of an event being true.
Probability that patient X is sick given observed symptoms

→ Unified mathematical framework : probability measures.
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Reasoning under uncertainty

Can probabilities cover any situation involving uncertainty ?
Content of the urn revealed except for one marble !

?

Let X denote the color of a randomly picked marble.

Let Z denote the color of the last marble.

What is the probability of X = • ?

P (X = •) = P (X = •|Z = •)︸ ︷︷ ︸
0.6

P (Z = •) + P (X = •|Z = ◦)︸ ︷︷ ︸
0.5

P (Z = ◦)

(Total Probability Theorem)
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Reasoning under uncertainty

Probabilistic solutions
Naive idea : choose a uniform distribution for Z ∼ Ber

(
1
2

)
→ inconsistent probability value : P (X = •) = 0.55.

Hierarchical idea : investigate candidate distributions for X :

X ∼ µ1 = Ber (0.5) or X ∼ µ2 = Ber (0.6)

Define a variable H taking values in the set {µ1; µ2} and H ∼ Ber (θ).
→ still need to set a parameter.

Conservative idea : use lower and upper bounds :

min {µ1 (•) ; µ2 (•)} ≤ P (X = •) ≤ max {µ1 (•) ; µ2 (•)}

The belief function idea : use probabilities with a different hardcore
logic.
→ 100% neutral while fitting data.
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Reasoning under uncertainty

From Probabilities to Belief functions [Dempster 67, Shafer 76, Dempster 08]

Suppose an assertion B ∈ σΘ is described by the following triplet of
epistemic states :

{true; false; don’t know} .

Let us assign probabilities (u, v, w) to these states and u + v + w = 1.

Obviously, Bc is described by the triplet (v, u, w).

The set function mapping B to probabilities u is denoted bel and is
called a belief function.

The plausibility function pl is given by

pl (B) = 1 − bel (Bc) = 1 − v = u + w.

Our ignorance on B is featured by w = 1 − u − v = pl (B) − bel (B) !
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Reasoning under uncertainty

Belief functions
For any B′ ⊆ B, B′ being true logically implies that B is true.

A convenient representation is given by the mass function m :

bel (B) =
∑

B′⊆B
m

(
B′) . (1)

m (B) is the support given to B based on available evidence that
cannot be refined to subsets of B and∑

B⊆Θ
m (B) = 1 and m (B) ≥ 0, ∀B ⊆ Θ. (2)
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Reasoning under uncertainty

Belief functions and the marbles
Assign the following (u,v,w) triplet to H = µ1 :

{H = µ1} → (0; 0; 1) (3)

→ In the continuous case, the wine/water example also features the
ability of belief functions to fit imprecise data.
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Reasoning under uncertainty

Challenge : fit imprecise data to models
Example 1 : Let Ip denote the value of a grayscale image at pixel p.

Let ap denote the sensor value at pixel p.

For any positive τ < τ ′, Ip ∈ [ap − τ ; ap + τ ] is less likely than
Ip ∈ [ap − τ ′; ap + τ ′].

[BELIEF 2012]
Choose a non-decreasing function F w.r.t. τ and obtain a mass function
with positive masses assigned to nested intervals [ap − τ ; ap + τ ],

mp : model for the pixel value
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Reasoning under uncertainty

Challenge : fit imprecise data to models

[BELIEF 2012]
Take the set of mass functions in the neighborhood of pixel p :

Conflict κ = Edge detector

κ{mp;mp′} =
∑

A,B⊆Θ
A∩B=∅

mp (A) mp′ (B)

John Klein (Lille1) HDR defense 07/12/2017 20 / 50



Reasoning under uncertainty

Challenge : fit imprecise data to models
Example 2 : Let Γi denote the output predicted by a 1-vs-all
probabilistic classifier.

Suppose Θ = {y1; . . . ; yℓ} is the set of classes.

Γi is a random set, for instance the 1st classifier returns

either y1 or {y2; . . . ; yℓ}

Γi is an ill known random variable on Θ and induces a probability
distribution on a sub-σ-field, i.e. a belief function on Θ.
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Reasoning under uncertainty

Where do belief functions live ? Where do mass functions live ?
Let mB denote the (categorical) mass function encoding the
information X ∈ B, i.e. mB (B) = 1.

The set of mass functions M (mass space) is the simplex spanned by
the categorical mass functions.

m (Θ)

m ({a})

m ({b})

m{b} m{a}

mΘ
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Reasoning under uncertainty

Structures for M
a partial order ⊑ → order theoretic structure,

a distance d → metric space structure,

a combination rule ⋆ → algebraic structure.

Problem
Get consistent results across structure types

d ⋆

⊑

M
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Order theoretic structures for belief functions

d ⋆

⊑

M
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Order theoretic structures for belief functions

M as a partially ordered set
Does m1 = 1

2m{a} + 1
2m{b} convey more information than

m2 = 1
3m{a} + 1

3m{b} + 1
3mΘ ?

Example :

m1 ⊑pl m2 ⇔ pl1 (B) ≤ pl2 (B) , ∀B ⊆ Θ. (4)

m{b} m{a}

mΘ

m2
Spl (m2) = {m : m ⊑pl m2}
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Order theoretic structures for belief functions

Pre-orders for a family A = {m1, . . . , mℓ} of mass functions
How does each mass function contribute to the family inconsistency ?

m{b} m{a}

mΘ

outlier mass function

[IJAR 2011]

ξ(mi) = 1
ℓ − 1

∑
mj∈A\{mi}

κ{mi;mj}, (5)

if there is at least one pair with κ{mi;mj} > 0.
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Order theoretic structures for belief functions

[IJAR 2011]
Take two disjoints sets A and B.
If m ∈ A, then

m = (1 − x) mA + xmΘ or m = (1 − x) mB + xmΘ.

→ ξ (mi) is linear w.r.t. r (ratio of those functions supporting A) and does
not depend on ℓ.
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0

0.2

0.4
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0.8

1

r : proportion of functions supporting set A

ξ
( m

i)

x = 0.9
x = 0.8
x = 0.7

x = 0.6

x = 0.5

x = 0.4

x = 0.3

x = 0.2

x = 0.1

x = 0

(not achieved by
[Martin 2008] or
[Schubert 2010])
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Metric space structures for belief functions

d ⋆

⊑

M
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Metric space structures for belief functions

M as a metric space
How far away are m1 and m2 = 1

2m{a} + 1
2mΘ ?

Example :

dpl,k (m1, m2) = 1
ρ

 ∑
B⊆Θ

|pl1 (B) − pl2 (B) |k
1/k

. (6)

m{b} m{a}

mΘ

m2 {
m : dpl,1 (m, m2) = 1

8

}
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Metric space structures for belief functions

d ⋆

⊑

M
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Metric space structures for belief functions

M as both a metric space and a partially ordered set
To what extent ⊑ and d carry compatible attributes of M ?

Notion of consistency

[IJAR 2016] (with S. Destercke)

d is ⊑-compatible if for any mass functions m1, m2 and m3 such that
m1 ⊑ m2 ⊑ m3, we have :

max {d (m1, m2) ; d (m2, m3)} ≤ d (m1, m3) , (7)

→ formalization of principles from [Jousselme 2012]
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Metric space structures for belief functions

M as both a metric space and a partially ordered set

[IJAR 2016] (with S. Destercke)
Several consistency results, e.g. dpl,k is ⊏pl-compatible (k < ∞).

m{b} m{a}

mΘ

m3

m2

m1
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Metric space structures for belief functions

M as both a metric space and a partially ordered set

[IJAR 2016] (with S. Destercke)
Consistency is useful for belief function approximation

Problem : find m∗ ∈ R s.t.
(i) m∗ approximates m,
(ii) m∗ is more informative than m.

Solution : use distance dpl which is consistent with ⊑pl :

m∗ = arg min
m′∈R∩Spl(m)

dpl
(
m, m′)

Guarantee : m∗ is a maximal inner approximation :
For any m′ ∈ R ∩ Spl (m), we have m∗ ̸⊑pl m′.
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Algebraic structures for belief functions

d ⋆

⊑

M
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Algebraic structures for belief functions

M as a magma
One just needs to endow M with some binary operation (or
combination rule)

M × M → M,

(m1, m2) → m1 ⋆ m2. (8)

m{b} m{a}

mΘ

m1
m2

m1 ⋆ m2
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Algebraic structures for belief functions

M as a magma
Example : the unnormalized version of Dempster’s rule, i.e. the
conjunctive rule ∩⃝

m1 ∩⃝m2 (E) =
∑

A,B⊆Θ,
A∩B=E

m1 (A) m2 (B) , (9)

M as a monoid
Monoid = Magma with an associative rule and a neutral element

Also true for ∩⃝ : mΘ is the neutral element and associativity holds.
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Algebraic structures for belief functions

M as a magma + idempotence
How to cautiously combine mass functions while ensuring increased
informative content ?

[BELIEF 2016] (with S. Destercke)

m1 ⊓ m2 = arg min
m∈Spl(m1)∩Spl(m2)

d (m, mΘ) . (10)

m{b} m{a}

mΘ

m1

m2
m1 ⊓ m2
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Algebraic structures for belief functions

M as a magma + idempotence

[BELIEF 2016] (with S. Destercke)
Features of rule ⊓

operator condition for use commutativity associativity idempotence neutral
element

∩⃝ none yes yes no mΘ
[Smets 90]

⊕ m1 ∩⃝2 (∅) < 1 yes yes no mΘ
[Dempster 67]

∧⃝ m1 (Θ) > 0 and m2 (Θ) > 0 yes yes yes none
[Denoeux 08]

⊓ none yes quasi yes mΘ
[BELIEF 2016]

[IJAR 2018] (with S. Destercke)
→ an idempotent distance based disjunctive rule.
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Algebraic structures for belief functions

d ⋆

⊑

M
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Algebraic structures for belief functions

M as both a monoid and a metric space
To what extent ⋆ and d carry compatible attributes of M ?
Another notion of consistency is needed

[IJAR 2014 + IEEE TC 2016] (M. Loudahi’s PhD)
d is consistent w.r.t. ⋆ if for any mass functions m1, m2 and m3 on Θ :

d (m1 ⋆ m3, m2 ⋆ m3) ≤ d (m1, m2) . (11)

m{b} m{a}

mΘ

m1

m2
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Algebraic structures for belief functions

M as both a monoid and a metric space

[IJAR 2014 + IEEE TC 2016] (M. Loudahi’s PhD)
Several results proving distance/rule consistencies.

Example :
map each mass function m to its Dempsterian matrix D

Each column of D is m ∩⃝mB for some B ⊆ Θ.

Define d (m1, m2) = 1
ρ ∥D1 − D2∥1.

The metric d is consistent with ∩⃝.
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Conclusions and future research directions

Conclusions
Belief functions provide a large spectrum of models for reasoning
under uncertainty.

We use them when there is ignorance (misspecified priors).

Downside : greater time and memory complexities and more subtle
calculus rules.

3 selected contributions :

Proved which distance agrees with which combination rule.

Proved which distance agrees with which partial order.

Introduced a new rule that agrees with the least commitment principle.
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Conclusions and future research directions

Research directions
Structure of the mass space

Open question
Consistency with both a partial order and a combination rule ?

Open question
What about consistency between metrics and specificity pre-orders ?

Applications of belief functions or imprecise probabilities to signal and
image processing.

Under preparation
An upper probability model for pixel values.

→ What’s new ? It takes the sensor technology into account.
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Conclusions and future research directions

Research directions
Applications of belief functions or imprecise probabilities to machine
learning.

Idea
Use behavior based combination [Pichon et al. 2014] to combine classifiers
(in the wake of M. Albardan’s PhD).

m : 1 vs all classifier output mmeta classifier performances on
a validation set

mrec (B) =
∑

A⊆Θ,H⊆S∪
s∈H

ΓA(s)=B

m (A) × mmeta (H) . (12)
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Conclusions and future research directions

Research directions (long term)
Belief functions and knowledge representation in AI.

Open question
Can we achieve evidence deletion ?

Idea
Define a pair of rules for insertion/deletion of evidence.

m{b} m{a}

mΘ

m1

m2
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Conclusions and future research directions

Thank you for your attention.
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Appendices

M as a pre-ordered set
Inconsistency pre-order : does m1 = 1

2m{a} + 1
2m{b} encode less

consistent information than m2 = 1
2m{a} + 1

2m{a,b} ?
Example :

Ξ(m) = max
a∈Θ

pl({a}) (13)

Ξ (m1) = 1
2 while Ξ (m2) = 1.

m{b} m{a}

mΘ

{
m : Ξ (m) = 2

3

}
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Appendices

M as a pre-ordered set
Specificity : do probability masses in m1 support large (imprecise)
subsets as compared to m2 ?
Example :

Card (m) =
∑
B⊆Θ
B̸=∅

m (B) |B| (14)

Card (m) = 1 while Card (m2) = 1.5.

m{b} m{a}

mΘ

{m : Card (m) = 1.5}
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Appendices

Order theoretic and algebraic structures for M

d ⋆

⊑

M

m1 = m1 ⋆ m2 ⇔ m1 ⊑⋆ m2. (15)
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Appendices

Medical image processing (C. Feudjio’s PhD) : Mammogram segmentation

John Klein (Lille1) HDR defense 07/12/2017 54 / 50



Appendices

Medical image processing (C. Feudjio’s PhD) : Mammogram segmentation
Goal : prioritize patients (dense tissue ratio is correlated with cancer
risk)

2 first steps : (spatial) Fuzzy C-means + pre and post-processing.

Correct edge points achieve maximal gradient norm among pixels the
search segment (in green)
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Appendices

Medical image processing (C. Feudjio’s PhD) : Mammogram segmentation
Goal : prioritize patients (dense tissue ratio is correlated with cancer
risk)

2 first steps : (spatial) Fuzzy C-means + pre and post-processing.

Curvature thresholding + similar contour post-processing
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Appendices

Medical image processing (C. Feudjio’s PhD) : Mammogram segmentation
Final step : histogram specification + threshold.

Gamma corrections as candidate transports
Obj. func. : Wasserstein dist. + regularizer based on HoG features
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Appendices

Machine Learning (M. Albardan’s PhD) : Classifier combination
Goal : alleviate the burden of choosing among equally appealing
classification algorithms and take the lot !

Classifier 1 Classifier 2 Classifier 3

Input

C1 C2 C2

Combined output

John Klein (Lille1) HDR defense 07/12/2017 58 / 50



Appendices

Machine Learning (M. Albardan’s PhD) : Classifier combination
Idea : Use classification performances to combine classifiers

Performances are evaluated on a validation set in the form of
confusion matrices.

Using these matrices, we have access to

P
(
true class|kth classifier output

)
.

We need
P (true class|all classifier outputs)
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Appendices

Machine Learning (M. Albardan’s PhD) : Classifier combination
Solutions :

Assume classifier output cond. indep. and apply Bayes theorem.
→ Application to physiological signal classification (collab. with L.
Sparrow)

Propose a parametric model of P (true class|all classifier outputs) as an
aggregation of the distributions derived from confusion matrices :
→ t-norm + renormalization.
→ copula function (collab. with B. Guedj)
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Appendices

Elec. Engineering (collab. with H. Wang and S. Li) : Wind turbine control
Goal : maximize energy production of a wind turbine

For a given wind speed, there is an optimal turbine speed for power
production.

Solution : a controller for rotor currents based on sliding mode
control.

Sliding mode control use a discontinuous control signal to confine
state trajectories to a desirable manifold (e.g. one that has an
equilibrium state point).
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