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1. Introduction

The evidence theory is a formal frame of reasoning with uncertainty. It can efficiently represent uncertain or/and
imprecise pieces of information using some mathematical objects called belief functions. The evidence theory encom-
passess both the probabilisty and fuzzy set theories. It was initiated in 1967 by A. P. Dempster [] and further developed
by G. Shaffer in 1976 in his seminal work [1]. The evidence theory is thus also known as the Dempster-Shafer theory
or the belief function theory.
Information fusion as part of this framework has been widely used to provide more relevant solutions to decision mak-
ing problems. Each state of belief of a source is represented by a belief function and source aggregation is obtained
by applying a combination rule to their corresponding belief functions. The orthogonal sum of Dempster combines
belief functions so as to retain common evidence while discarding conflicting evidence. It is a generalization of the
intersection in Kantor’s set theory. In this rule, conflicting evidence is actually supressed using a normalization factor
relying on the so-called Dempster conflict degree. This degree is the amount of support given to conflicting hypothe-
ses. It is also the first measure introduced to compute, in some way, the difference between some belief functions.
This degree is unfortunately not fully appropriate to assess the dissimilarity between belief functions, since it can
provide a non-null value when comparing two identical information sources.
In the past decades, the belief function communinity has shown a growing interest in determining meaningful dissimi-
larity measures between bodies of evidence. The need for such measures is explained by the fact that it would help for
instance to compute approximations of belief functions [], to cluster belief functions [] or to estimate some parameters
feeding refined combination rules []. All (dis)similarity measures attempt to describe the degree of (non-)alikeness
between belief functions in a meaningful way for the widest range of applications. Indeed, the choice of a particular
measure is most of the time application-dependent. Up to now, there is no formally well established measure assessing
belief function difference to the user’s satisfaction in all application fields. This is mainly explained by the fact that
each application requires some properties and so far no similarity measure possess all of them. In fact, seeking a
measure possessing all possible properties is likely to be futile as a first application field might well require property
that is incompatible with the property required in a second application field.
As a conseqeuence, a plethora of similarity measures is found in the literature. Among the most widely known mea-
sures, the betting commitment distance was proposed by Tessem et al. [2] to evaluate the approximation of basic
belief assignments. It is applied to the pignistic transform of the processed belief functions. The pignistic transform
turns a belief function into the least committed probability distribution. The Tessem dissimilarity is thus calculated in
a probability space. To solve the same problem, Bauer [3] introduced, in 1997, two other measures based on pignistic
probabilities. In 2006, Tessem’s distance is jointly used with Dempster’s conflict in W. Liu’s work [4] to define the a
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new conflict measure between basic belief assignments and investigate the consistency of applying Dempster’s com-
bination rule in particular cases. Zouhal and Denœux [5] also proposed a mean square distance based on the pignistic
transform to compare between a belief function and an indicator vector. It is used to improve the performance of a
k-NN classifier algorithm and Dempster’s rule of combination. More recently, Petit-Renaud [] proposes a measure in
the power set of belief functions based on the Hausdorff distance. Fixen and Mahler [6] proposed a ”classification
miss-distance” between belief functions based on the Bayesian a priori distribution matrix. Jousseme’s distance [7]
is based on the euclidean metric provided from the geometric interpretation of evidence theory. Jousselme used the
Jaccard coefficient as a similarity measure between focal elements. Diaz et al. [8] proposed also a distance based on
a similarity measure between focal elements. The properties of this measure are different from other approaches as it
mainly investigates the proximity of the processed belief functions with the vacuous belief function, which stands for
a state of ignorance. In 2011, D. Han et al. [9] introduced four dissimilarity measures in the evidence theory based
on some lossy transformation of belief functions into fuzzy measures. Khatibi and Montazer [10] defined a distance
based on belief intervals. Their approach relies on an approximate reasoning using the total degree of belief while
considering problem uncertainty. A thorough survey about dissimilarity measures in the belief functions theory and
their properties was presented in 2012 by Jousselme and Maupin [11]. The authors also provided generalizations of
some distances thereby introducing families of new measures.
In this article, we also intend to explore another way of designing a distance between bodies of evidence. All pre-
viously mentionned distances are computed from objects called basic belief assignments (bba). Instead, a distance
computed from the Dempsterian specialization matrices is proposed. Each bba defines a unique specialization matrix
and conversely. This choice is justified by the fact a specialization matrix not only decribes the present state of belief
but also the potential future states that could be reached if additionnal pieces of evidence were combined. A classical
matrix distance is the Froebinius distance, which is simply the euclidian distance of matrices reshaped as column
vectors. This metric appears to have properties that can be easily understood in terms of belief functions. In addition,
its behavior has no equivalent in previously introduced distances.
The sequel of this article is organized as follows: section 2 recalls some fundamentals of evidence theory with a
particular stress on matrix calculus as part of this framework. Section 3 gives a short review and definitions of pre-
viously introduced belief function distances. Our new matrix specialisation distance is also introduced along with its
properties in this section. In section 4, a comparison of the newly introduced distance with existing ones is provided
through worked out examples and property interpretations.

2. Belief functions fundamentals and matrix calculus

2.1. Basics of the evidence theory

In the Dempster-Shafer theory [1], an evidence model is defined in a frame of discernment Ω which contains a
finite number of exclusive and exhaustive hypothesis. The knowledge is expressed by using the basic belief assignment
attributed to each hypothesis of the power set 2Ω containing all the possible disjunctions of the frame of discernment
Ω. Then, a belief state is presented by a mapping m defined in 2Ω −→ [0, 1] satisfying the normality condition:∑

A⊆Ω

m(A) = 1 (1)

The same information can already be expressed by other functions such as the belief function (Bel), representing
the minimal degree of belief in an hypothesis, and the plausibility function which is used to express the incapacity
degree of belief in the opposite of the hypothesis A ⊆ Ω. These two functions are respectively represented by:

Bel(A) =
∑

(B⊆A,B,∅)

m(B) (2)

Pl(A) =
∑

(B∩A,∅, B∈2Ω)

m(B) (3)

The communality (q), also the implicability (b), are other forms to express the information treated in the framework
of belief functions. They are very useful for calculation issues. They can respectively be calculated from the basic
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belief assignment by using the following one-to-one correspondences:

q(A) =
∑
B⊇A
B∈2Ω

m(B) (4)

b(A) =
∑
B⊆A

m(B) = Bel(A) + m(∅) (5)

A subset A of Ω is called focal element of the function m if the basic belief assignment (bba) attributed to this
subset is strictly positive. The set of all focal elements is defined as the Kernel of the mass function m.

The decision making in the belief function theory is principally based on the pignistic transformation of the bba’s
to probability distributions. This transformation is defined by P. Smets in the frame of the Transferable Belief Model.
Each bba is so transformed into pignistic probability by using the formula:

BetP(ω) =
∑

A⊆Ω,ω∈A

1
|A|
.

m(A)
1 − m(∅)

(6)

where |A| is the cardinality of the subset A.
BetP can also be extended to all the elements of the power set 2Ω by using:

BetP(A) =
∑
ωi∈A

BetP(ωi) (7)

The mainly used operator when fusing the belief functions is the Dempster rule of combination. This choice is
justified since it respects the less commitment principle and accepts the total ignorance as neutral element. It is also
commutative ans associative. This rule is seen as the normalized version of the conjunctive rule of combination used
by P. Smets [12] in the transferable belief model. The simplest expression of the conjunctive rule using communality
measures is given by:

q1 ∩©2(A) = q1(A).q2(A), ∀A ⊆ Ω (8)

Given two bba’s m1 et m2, the conjunctive combination rule can also be defined as follow:

m1 ∩©2(A) =
∑

B∩C=A

m1(B).m2(C) (9)

The concept of Dempsterain specialisation is a particular case of the specialisation concept defined by Yager in
1986 in the belief functions theory. According to him, a basic belief assignment m is a specialization of another basic
belief assignment m1, if it is, at least, as committed as m1. This situation is then denoted by m v m1. The matrix
representation of the Dempstrian specialization is introduced into the belief functions theory in 1992 by F. Klawonn
and P. Smets [13]. It was then used in 2001 in the works of P.A. Monney [14].

To simplify the calculation issues laid to the complexity of the different algorithms developed in the belief func-
tions theory, P. Smets [12] introduced a matrix framework which is very useful because it makes more easier these
algorithmic calculus. This framework is reviewed in the sequel.

2.2. Basic belief assignments and matrix calculus
In 2001, A.L. Jousselme used a geometrical representation in her works about dissimilarity in the belief functions

theory. This representation considers the basic belief assignments as vectors defined in vector space spanned by the
different elements of the power set 2Ω. The basis vectors of this space are organized following an order called binary
or natural. This representation was after developed in the works of F. Cuzzolin [15, 16].

The matrix notation is very useful in the belief function theory algorithms. It allows jointly to better establish
the linearity relationships between the basic operators of belief functions and to widely simplify the the algorithmic
calculus of the belief functions operations. This well established notation is introduced in 2002 by P. Smets [12].
He proposed then a framework to apply the matrix calculus into belief functions. These works were after used by F.
Pichon [17].
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2.2.1. The natural order of basic belief assignments
For algorithmic aims, a basic belief assignment m (also the four other related forms of information representation

bel, pl, b and q) defined in a frame of discernment Ω is conventionally seen as a stochastic column vector about 2|Ω|

elements. The elements of this vector can, in fact, be organized in any arbitrary way. But a certain particular order
renders the the algorithmic calculations more accessible and easily reachable. This order is called natural order.

In an ordered frame of discernment of cardinality N = |Ω|, one can attribute a binary representation defined over
N digits to each subset A ⊆ Ω. The hypothesis ωi ∈ A are so encoded by the binary value 1 in the so related binary
representation of A. In fact, the ith element of the vector m corresponds to the subset A of Ω. This last is encoded
by the binary representation of the value i − 1 defined over N digits. Suppose, for instance, a frame of discernment
Ω = {a, b, c}. The table 1 summarizes the order and the binary representation of the elements of the mass vector m.
For example, the eighth element corresponds to the subset Ω = {a, b, c} because of the binary representation of the
number 8 − 1 = 7 is 111. Also, the binary representation 100 concerns the subset {c} ⊂ Ω which is the fifth element
in the binary order sins 4 + 1 = 5.

Table 1: Binary order of the mass vector m while Ω = {a, b, c}
Position c b a Ω m

1 000 ∅ m(∅)
2 001 {a} m({a})
3 010 {b} m({b})
4 011 {a, b} m({a, b})
5 100 {c} m({c})
6 101 {a, c} m({a, c})
7 110 {b, c} m({b, c})
8 111 {a, b, c} m({a, b, c})

For the sequel, the following notations are used :

• The vectors are column vectors and the matrices are square. Their length is equal to 2|Ω|.

• The vectors and matrices are written in bold notation. A matrix can be represented by M = [Mi j], also by
the notation M = [M(A, B)], ∀A, B ∈ Ω. The row and column indexes i and j are those corresponding to
the subsets Bi and B j of Ω ordered following the binary order. For instance, if Bi = {a} and B j = {a, c} in
Ω = {a, b, c}, then the indexes are 2 and 6 respectively.

• I is the identity matrix, its components are null except those of the principal diagonal which are equal to 1.

• J is the square matrix which all components are null except those of the secondary diagonal that are equal to 1.
The principal property of the matrix J is its ability to invert the rows of some matrix M when the product J.M
is computed. It inverts also the order of the columns when the product is M.J is realized.

Definition 1. The concept of negation of a basic belief assignment m in the frame of discernment Ω is defined by
Dubois and Prad [12] as :

m̄(A) = m(Ā) (10)

where m̄ is the negation of m and the subset Ā is the complementary of A ⊆ Ω in Ω.

Then, one can easily obtain, in this case, the communality of the basic belief assignment m̄ as follow:

q̄(A) =
∑
B⊇A

m̄(B)

but we know that : i f B ⊇ A⇔ B̄ ⊆ Ā

⇒ q̄(A) =
∑
B̄⊆Ā

m(B̄)

q̄(A) = b(Ā)

In the same way, one can establish:
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b̄(A) = q(Ā)

The previous results are rewritten in the matrix representation as follow:

m̄ = J.m, q̄ = J.b, b̄ = J.q

2.2.2. The Möbius transform
All the possible transformations between the different representations of evidence in the Dempster-Shafer theory

can be written using the matrix notations. For example, given a basic belief assignment m, its transformation into
communality function is given by the equation:

q(A) =
∑

Ω⊇B⊇A

m(B)

This latter can be expressed by:
q(A) =

∑
Ω⊇B

M(A, B).m(B)

while M(A, B) =

{
1 i f A ⊆ B
0 otherwise.

The elements M(A, B) are the components of the matrix M called incidence matrix.

Definition 2. Given an ordered frame of discernment Ω = {ω1, ω2, ..., ωn}, the incidence matrix M is square and its
elements are given by:

Mi j =

{
1 i f Bi ⊆ B j

0 otherwise. (11)

• The matrix M is upper triangular. All its diagonal elements are one.

• The matrix relationships are subsequently provided: q = M.m⇒ m = M−1.q

• The communality matrix is diagonal and defined by Q which elements are: Qi j =

{
q(Bi) i f i = j
0 otherwise.

For the example concerning the ordered frame of discernment Ω = {a, b, c}, the incidence matrix M is given in the
table 2.

Table 2: Incidence matrix M when Ω = {a, b, c}
∅ {a} {b} {a, b} {c} {a, c} {b, c} {a, b, c}

∅ 1 1 1 1 1 1 1 1
{a} 0 1 0 1 0 1 0 1
{b} 0 0 1 1 0 0 1 1
{a, b} 0 0 0 1 0 0 0 1
{c} 0 0 0 0 1 1 1 1
{a, c} 0 0 0 0 0 1 0 1
{b, c} 0 0 0 0 0 0 1 1
{a, b, c} 0 0 0 0 0 0 0 1

We can easily consider that the matrix M is upper triangular and it is built using the elementary constructing bloc:

M1 =

[
1 1
0 1

]
The matrix M1 represents the incidence matrix when |Ω| = 1. It is also clear that length(M) = 2|Ω|. For an ordered

frame of discernment with i elements, the computation of the incidence matrix can, in fact, be recursively computed
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from the incidence matrix of a frame containing i − 1 elements. This construction is possible by using the Kronecker
product of the constructing bloc M1 by the incidence matrix of the frame containing i − 1 elements[12]:

Mi = Kron
([

1 1
0 1

]
,Mi−1

)
(12)

In the same way, the matrix transformation of the basic belief assignment m into implicability function b is possible
by using the matrix B. we also can write b = B.m [12]. This matrix can be calculated from the matrix M as follow
B = J.M.J [12]. It can also be computed, like for the incidence matrix, by using the Kronecker product. The
constructing bloc used in this case is:

B1 =

[
1 0
1 1

]
2.3. Dempsterian specialisation matrices

The concept of specialisation is basically founded on the redistribution of the masses of evidence after bringing
new information knowledge. The impact of the new knowledge changes the initial commitment related to the problem
and produces a new basic belief assignment at least as committed as the initial distribution [13, 14].

Definition 3. A specialisation matrix S is a stochastic matrix [12] following the columns which coefficients S (A, B) =

0 ∀ A * B.

So, given a basic belief assignment m0 which attributes the subset B the value m0(B). If S (A, B) ∈ [0, 1] is the
amount of the mass m0(B) which is transferred to the subset A ⊆ B after specialisation and contributes on constructing
m1(A), then :

m1(A) =
∑
B⊆Ω

S (A, B).m0(B) (13)

In the aim of conserving the total commitment m0(B) after the transfer, the two following conditions are necessary:
∑

A⊆B
S (A, B) = 1, B ⊆ Ω

S (A, B) > 0 ⇒ A ⊆ B

The basic belief assignment m1 is called specialisation of m0. It is achieved by the following matrix notation:

m1 = S.m0

where S is a square matrix which elements S i j = S (Bi, B j) and Bi, B j ⊆ Ω.

2.3.1. The conjunctive combination rule
The conjunctive combination rule, certainly the most used rule in the information merging problems, provides a

bba which is at least as committed as the merged bba’s. It is so a form of specialisation process. It can be expressed
using the concept of matrix representation. In fact, the conjunctive revision of a basic belief assignment m1 by another
basic belief assignment m2 is realized by a specialisation matrix called Dempsterian [13] and denoted Sm2 . This
specialisation matrix is seen as a function of the basic belief assignment m2. The conjunctive combination rule is
written as:

m1 ∩©m2(A) =
∑

B∩C=A

m1(B).m2(C) (14)

=
∑
B⊆Ω

( ∑
B∩C=A

m2(C)
)
.m1(B) (15)

=
∑
B⊆Ω

S m2 (A, B).m1(B) (16)
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One can easily see that the elements S m2 (A, B) are only depending on the basic belief assignment m2. It is also
clear that these elements are the components of the so called Dempsterian specialisation matrix of m2 since it is
emerged from the non-normalized Dempster’s combination rule.

The matrix notation of the conjunctive combination rule is :

m1 ∩©m2 = Sm2 .m1 (17)

Definition 4. Given a basic belief assignment m defined on a frame of discernment Ω, the related Dempsterian
specialisation matrix is square which elements are obtained by :

(S m)i j =
∑

C∩B j=Bi

m(C) (18)

• The matrix Sm is upper triangular.

•
∑

1≤i≤2|Ω|
(S m)i j = 1 for j ∈ {1, 2, ..., 2|Ω|}.

The conjunctive combination rule must satisfy the the commutativity and the associativity properties. Its ma-
trix formulation (equation (17)) highlights its linear aspect. Obviously, it is very easy to prove that the family of
Dempsterian specialisation matrices is associative and commutative.

Theorem 1. Given two Dempsterian specialisation matrices Sm1 and Sm2 obtained from two basic belief assignments
m1 and m2 respectively. If the matrix Sm12 is so the Dempsterian specialisation matrix of the basic belief assignment
m12 = m1 ∩©m2 resulting from the conjunctive combination of m1 and m2. Then, the following equality holds:

Sm12 = Sm1 .Sm2 = Sm2 .Sm1

Proof. Given three basic belief assignments m1, m2 and m3. The result of their conjunctive combination is written:

m1 ∩©2 ∩©3 = m1 ∩©m2 ∩©m3

= Sm1 .m2 ∩©m3

= Sm1 .Sm2 .m3

moreover, we know the conjunctive combination low is commutative and associative, then:

m1 ∩©2 ∩©3 = m2 ∩©m1 ∩©m3

= Sm2 .Sm1 .m3

We can therefore statute that the Dempsterian specialisation matrix of the basic belief assignment m12 which
results on the combination of m1 and m2 is:

Sm12 = Sm1 .Sm2 = Sm2 .Sm1

Theorem 2. given a Dempsterian specialisation matrix Sm and a communality matrix Q of some basic belief assign-
ment m defined on Ω. If M is the incidence matrix related to this frame of discernment, Sm can be written as:

Sm = M−1 ∗Q ∗M (19)

Proof. Note that this theorem was proven in [14] using the set properties of the inclusion and intersection of focal
elements. In this work, we use the matrix calculus formalism to provide a very simplified demonstration.
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Given m12 = m1 ∩©m2. We can then calculate the communality vector q12 corresponding to m12 as:

q12 = M.m12

= M.Sm1 .m2

= M.Sm1 .M
−1.q2

because : q2 = M.m2

but, the vector q12 = diag(q1).q2

= Q1.q2

Then, we obtain :
Q1.q2 = M.Sm1 .M

−1.q2

Finally
Sm1 = M−1 ∗Q1 ∗M

2.3.2. Dempsterian specialisation matrix and discounting
Proposition 1. Given a basic belief assignment m defined over a frame of discernment Ω and α ∈ [0, 1] a discounting
factor. The Dempsterian specialisation matrix of the discounted bba using the factor α and denoted αm is:

αSm = (1 − α).Sm + α.SmΩ (20)

where Sm is the Dempsterain specialisation matrix of the bba m and I the identity matrix.

Proof. The basic belief assignment resulting from the discounting operation of m using the factor α is:

αm = (1 − α).m + α.mΩ (21)

where mΩ is the vacuous belief assignment defined on Ω.
The communality of the discounted basic belief assignment is defined as αq such that:

αq = M.αm = M.
(
(1 − α).m + α.mΩ

)
then:

αq = (1 − α).q + α.qΩ
αQ = (1 − α).Q + α.QΩ (22)

It is obvious that the communality matrix of the vacuous basic belief assignment is equal to the identity matrix:
QΩ = I. The dempsterian specialisation matrix associated to the discounted basic belief assignment αm is obtained
by:

αSm = M−1.αQ.M
= M−1.

(
(1 − α).Q + α.QΩ

)
.M

= (1 − α).M−1.Q.M + α.M−1QΩ.M

This result allows to write the following relationship:

αSm = (1 − α).Sm + α.SmΩ

where:SmΩ = I
One can see that the Dempsterian specialisation matrix of the discounted bba is calculated analogically in the same

way as the discounted bba itself. The analogy is realized by replacing the bba’s by their related matrices.

8



2.3.3. Intermediate result on Dempsterian specialization matrices of simple support bba’s (sbba’s)
Proposition 2. Suppose a sbba on the frame Ω, m = mw

X focussed on the set X ( Ω. If its Dempsterian specialization
matrix is denoted by S = S mw

X
, one has:

S = w̄S mX − wI, (23)

with w̄ = 1 − w, S mX the Dempsterain specialization matrix of mX , the categorical bba on the set X, and I the identity
matrix.

Proof. By definition of specialization matrices, one has:

S (A, B) = m (A|B) ,

with m (.|B) the sbba m after conditionning on B. Using the conditionning formula, one can write:

S (A, B) =
∑
C⊆Ω

C∩B=A

m (C) .

Since m has only two focal elements, i.e. X and Ω, one has:

S (A, B) = 1X∩B=Am (X) + 1Ω∩B=Am (Ω) ,
= w̄1X∩B=A + w1B=A, (24)

with 1Y the indicator function such that :

1Y =

{
1 if Y is true,
0 otherwise .

Let us denote by S mX the matrix such that:

S mX (A, B) =

{
1 if X ∩ B = A,
0 otherwise .

Consequently, one can write:

S = w̄S mX + wId.

Moreover, applying this result with w = 0 gives S = S mX . Consequently, S mX can also be interpreted as the special-
ization matrix of the categorical bba on X, which is denoted by mX .

3. Specialization matrix as a basis for a new belief function distance

3.1. A short review of bba distances
The distance measure is used in the evidence theory to describe the difference among distinct pieces of evidence.

Since the introduction of the Dempster conflict degree, many distance measures are defined in the literature to deal
with the disagreement between pieces of evidence while the conflict degree is not appropriate to measure dissimilarity
between bba’s. A survey about the most known distances defined so far in the belief functions theory is introduced in
2012 by Jousselme and Maupin [11].

A distance in the belief functions theory is a measure giving some scalar comparison information between two
bba’s. This measure is explicitly dependent on the structure of the compared bba’s and must satisfy some properties.

Definition 5. Given a frame of discernment Ω = {ω1, ω2, · · · , ωn}. A mapping d : 2Ω ∗ 2Ω −→ [0, 1] is called
normalized distance between two bba’s m1(.) and m2(.) defined in Ω if the following properties are satisfied:

(P1)- Non-negativity and normality : 0 ≤ d(m1,m2) ≤ 1.

(P2)- Symmetry : d(m1,m2) = d(m2,m1).
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(P3)- Definiteness : d(m1,m2) = 0⇔ m1 = m2.

(P3)- Triangle inequality : d(m1,m2) ≤ d(m1,m3) + d(m3,m2)

In a general point of view, there exists two types of distance measures to deal with dissimilarity in the Dempster-
Shafer theory. Classically, we name the direct measures those based on the own geometrical interpretation of the
bba’s. It is principally question of distance measures in a vector space generated by the focal elements. The well
known measure of this kind is certainly the distance defined by A.L. Jousselme in 2001 [7]. It is based on a similarity
measure between focal elements. This distance is given by:

dJ(m1,m2) =

√
1
2

(m1 −m2)′ D (m1 −m2) (25)

where D is the Jaccard’s similarity matrix between the focal elements. Its components are:

D(A, B) =

{
1 i f A = B = ∅
|A∩B|
|A∪B| ∀A, B ∈ 2Ω (26)

Diaz et al. [8] proposed also a distance based on a similarity measure between focal elements. They proposed
to use a modified function of the similarity between focal elements. The resulting dissimilarity rewards the small
cardinalities and penalises at the same time high cardinalities of the focal sets.

dD(m1,m2) =

√
1
2

(m1 −m2)′ F(S,R) (m1 −m2) (27)

where S is the similarity matrix, R is a ratio that evaluates the proximity to the total ignorance and F is a mono-
tonically increasing function depending on S and R.

In the indirect measures, the bba is first transformed to a new space of representation dealing with uncertainty,
then, a dissimilarity measure is after computed in this new representation space. In this aim, dissimilarity degree can
be calculated by using the pignistic transformation BetP of the bba into probability space for example (B. Tessem
in 1993 [2], W .Liu in 2006[4]). The most used indirect degree of dissimilarity computed using the probability
transformation is the Tessem’s distance defined as follow:

dT = max
A⊆Ω
{|BetP1(A) − BetP2(A)|} (28)

Zouhal and Denœux also defined a dissimilarity measure based on the pignistic transformation of bba’s to measure
the distance between some belief function and an indicator vector. This measure is so used to improve a classification
algorithm based on the k-NN rule. It is defined as follows:

dZD(m1,m2) =

√
1
2

∑
ωi∈Ω

(
BetP1(ωi) − BetP2(ωi)

)2
(29)

One can easily prove that the Tessem’s measure and Zouhal and Denœux’s measure are pseudo-distances since they
don’t respect the definiteness property of the definition 5.

Another transformation based in fuzzy set theory is also possible in the field of indirect dissimilarity measures.
This latter is introduced in the belief function theory in 2011 by D. Han et al [9]. They also established a lossy
transformation which converts the bba’s into a membership functions and non-membership functions expressed in the
framework of intuitionistic fuzzy set theory. The reason of such an operation is that, in the fuzzy set theory, there
exists several well-defined measures of similarity between two bodies of knowledge.

The membership and non-membership functions to a some intuitionist fuzzy set provided from a given bba are
given by: {

µ(ωi) = Bel(ωi)
ν(ωi) = 1 − Pl(ωi)

(30)
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The hesitation degree of the element ωi is then given by:

π(ωi) = 1 − µ(ωi) − ν(ωi) (31)

Three dissimilarity measures are so established by using the intuitionist fuzzy set transformation:

dIF1(m1,m2) = 1
2n

∑n
i=1

(
|µ1(ωi) − µ2(ωi)|

+|ν1(ωi) − ν2(ωi)| + |π1(ωi) − π2(ωi)|
) (32)

dIF2(m1,m2) =
1
p
√

n
p

√√ n∑
i=1

(
ϕ1(ωi) − ϕ2(ωi)

)p
(33)

where ϕk(ωi) =
µk(ωi)+1−νk(ωi)

2

dIF3(m1,m2) =
1
p
√

n
p

√√ n∑
i=1

(
ϕ
µ
1,2(ωi) + ϕν1,2(ωi)

)p
(34)

where: ϕµ1,2(ωi) =
|µ1(ωi)−µ2(ωi)|

2

and ϕν1,2(ωi) = |
1−ν1(ωi)

2 −
1−ν2(ωi)

2 |

Our aim is not to establish a comparative study between these different measures. But we propose, in this con-
tribution, a new distance between belief functions defined over the power set and able to discriminate efficiently the
differences between bba’s without explicitly using the structural similarity between the focal sets.

3.2. Motivation of the work

The use of distance definition to deal with the dissimilarity measure in the belief functions theory is an interesting
way to define useful measures to compare the bba’s. But not all the distances we define in the belief functions theory
are appropriate to quantify dissimilarity between belief functions because of the complexity related to the uncertainty.
The simplest Euclidean distance, for example, don’t take care of the similarity between the focal elements. It compares
only the mass values, so the structural interactions due to intersection properties between the focal elements are not
considered when using the simple Euclidean distance.

The measures based on the geometrical interpretation use all the information available in the belief function
representation concept since they are defined over the power set 2Ω. Whereas such a representation lakes of solid
justifications [9] since the basis vectors of the geometrical space are spanned from the focal subsets of the frame of
discernment which are not independent because they are linked by the inclusion properties.

In the probability field and also the fuzzy set theory, there is a well established measures of dissimilarity which
are exploited in the belief functions theory. The bba’s are first transformed into pignistic probabilities or fuzzy mem-
bership and non-membership functions by some lossy information transformations, and then, the dissimilarities are
calculated in the new representation space. Since there is no bijection between the bba’s and the pignistic probabilities,
also the fuzzy membership functions, the resulting indirect dissimilarity measures might not use all the information
provided from the bba’s to perform dissimilarity measures between them.

Lets analyse the behaviour of the most used dissimilarity measures in the belief functions theory by the following
simple example :

Example 1. Given a frame of discernment Ω = {ω1, ω2}. Three bba’s are so defined as follow :

m1({ω1}) = m1({ω2}) = 0.5
m2(Ω) = 1
m3({ω1}) = 1

11



Table 3: Different dissimilarity measures between m1(.), m2(.) and m3(.) - Example 1
Distances d(m1,m2) d(m1,m3) d(m2,m3)

dJ 0.5 0.5 0.7071
dT 0 0.5 0.5
dZ 0 0.5 0.5

dIF1 1 0.5 1
dIF2 0 0.5 0.5
dIF3 0.5 0.5 0.5

The results obtained from the main dissimilarity measures are given in table 3
In this example, one can see the m1 is a uniform Bayesian distribution, m2 is a vacuous bba whereas m3 is a certain

and categoric bba. The bba’s m1 and m2 are very different in term of mass assignment and specificity but they produce
the same lakes of indeterminate choice in decision making. In table 3, one can see that the measures dT , dZ and dIF2
provide a null result when comparing the two different bba’s m1 and m2. Such a result is not satisfactory because
the property (P3) of a distance measure is not satisfied (see definition 5). These measures are pseudo-distances.
Using the Jousselme’s distance, the results show that the distance between m1 and m2 is the same as between m1 and
m3. So Jousselme’s distance cannot make difference between the two different situations presented in the example
above dealing with specificity and decision making. The same problem is observed when analysing the results of the
measures dIF1 and dIF3. These two measures cannot clearly discriminate the three compared situations.

According to the results provided from the simple example presented above, one can see that all the presented
measures suffer from lakes dealing with the specificity and the commitment of the three compared bba’s. Intuitively,
the obtained results are not satisfactory. These results are so questionable and not very persuasive.

Until now, there is no well established distance measure in the belief functions theory. Many recent works have
treated the problem but the search for a new distance between bba’s is not yet elucidated and remains still a challenge
for the belief functions community.

3.3. New distance based on the Dempsterian specialisation matrices

In this work, we introduce a new measure to compute the distance between bodies of evidence taking the max-
imum advantage of the information available in the belief functions framework. Our approach is to compare bba’s
through their Dempsterian specialisation matrices, since there is a one to one correspondence between each bba and
its Dempsterian specialisation matrix.

When the conjunctive combination rule is used, the way that some bba interact with each other is provided from its
Dempsterian specialisation matrix taking into account the structural interactions between all the subsets of the frame
of discernment. Our idea is then to compare the bba’s using their Dempsterian specialisation matrices.

In the Dempster-Shafer theory, a dissimilarity measure can be defined using the distance between the compared
basic belief assignments. Given an increasing monotone function f (x) and a normalized distance measure d(m1,m2) ∈
[0, 1] between the bba’s m1 and m2, one can write:

f (0) ≤ f
(
d(m1,m2)

)
≤ f (1)

⇒ 0 ≤
f
(
d(m1,m2)

)
− f (0)

f (1) − f (0)
≤ 1 (35)

The normalisation of the function f (x) given by the equation (35) is used to define a dissimilarity measure in the
framework of Dempster-Shafer theory. The relationship between the dissimilarity and the distance between two basic
belief assignment is so given through the function f (x) by the formula:

D(m1,m2) =
f
(
d(m1,m2)

)
− f (0)

f (1) − f (0)
(36)

Many choices of the function f (x) are possible, note for instance :
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• f (x) = 1 − exp(−x) ⇒ D(m1,m2) =
1−exp(−d(m1,m2)

1−exp(−1)

• f (x) = x
1+x ⇒ D(m1,m2) =

2.d(m1,m2)
1+d(m1,m2)

For the rest of this work we use the simplest choice of the function f (x) = x. In other words, we define the
dissimilarity between two basic belief assignments as the distance between them:

D(m1,m2) = d(m1,m2) (37)

In the aim of defining new distance between bba’s, we use a matrix norm to compare between their two Dempste-
rian specialisation matrices.

Definition 6. In the K-vector space Mn of square matrices of size n ∗ n, a matrix norm is a mapping defined on
Mn −→ R+ and satisfying the following conditions:

1. ‖ A ‖= 0⇔ A = 0
2. ‖ λA ‖= |λ|. ‖ A ‖
3. ‖ A + B ‖≤‖ A ‖ + ‖ B ‖
4. ‖ A.B ‖≤‖ A ‖ . ‖ B ‖

A norm N(x) is a structure of a metric space allowing to define a distance between the elements of this space. In
a so normed space, a distance is defined by:

d(x, y) = N(x − y) (38)

To calculate the distance between bba’s, we first calculate the Dempsterian specialisation matrices related to the
compared bba’s. Then, the Frobenius metric is used to evaluate the difference between these specialisation matrices.

Definition 7. We call Frobenius norm of a square matrix A the quantity defined by:

‖ A ‖F=

( ∑
1≤i, j≤2|Ω|

A2
i j

) 1
2

(39)

Remark 1. One can easily prove that :

• ‖ A ‖F=
(
trace(AtA)

) 1
2

• ‖ In ‖F=
√

n, where In is the identity matrix of size n.

• given a Dempsterian specialisation matrix Sm,
‖ Sm ‖F≤‖ SmΩ ‖F=

√
n.

This leads us to the following distance definition between bba’s.

Definition 8. given two basic belief assignments m1 and m2, their dempsterian specialisation matrices are respectively
Sm1 and Sm2 . The distance between m1 and m2 is computed as:

dS (m1,m2) =
1
ρ
‖ [Sm1 − Sm2 ‖F (40)

where ρ = 2.(2|Ω| − 1) is a normalisation coefficient.

The calculus of the normalisation coefficient ρ is performed in the annexe 6.1, item 2.
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3.3.1. Main properties
In this paper we introduced a full metric to compute the distance between bba’s. It satisfies all the basic formal

properties provided from the definition 5. Further, it satisfies also some specific properties related to the belief func-
tions theory concept. These specific properties, also the main properties of a full metric, are noted hereafter. The
proofs of these properties are given in the annexe 6.1.

Proposition 3. Given m1,m2 and m3 three basic belief assignments defined on Ω and α ∈ [0, 1] a discounting factor,
then the following properties hold for dS :

1. Definiteness : dS (m1,m2) = 0 ⇔ m1 = m2.
2. Symmetry : dS (m1,m2) = dS (m2,m1).
3. Non-negativity and normality : 0 ≤ dS (m1,m2) ≤ 1.
4. Triangle inequality : dS (m1,m2) ≤ dS (m1,m3) + dS (m3,m2).
5. Same rate discounting : dS (αm1,

α m2) = (1 − α).dS (m1,m2) ≤ dS (m1,m2)
6. Conjunctive rule and distance : dS (m1 ∩©2,m1) ≤‖ Sm1 ‖F .dS (m2,mΩ)
7. Discounting based triangle inequality: dS (αm1,m2) ≤ (1 − α).dS (m1,m2) + α.dS (m2,mΩ)
8. (1 − α).dS (m1,m2) − α.dS (m2,mΩ) ≤ dS (αm1,m2)

3.3.2. Belief ratio property
Proposition 4. Suppose m1 a bba on the frame Ω. If m2 = mw2

A and m3 = m1−a+aw2
A are two simple belief basic

assignments (sbba) on Ω focussed on the set A, then the following relation holds for the distance dS :

dS (m1,m1 ∩©m2)
dS (m1,m1 ∩©m3)

=
m2 (A)
m3 (A)

= a, (41)

with a ∈ [0, 1].

Proof. Let S i denote the Dempsterian specialization matrix of the sbba mi. It is known that if S 12 denotes the special-
ization matrix of bba m1 ∩©m2, one has S 12 = S 1.S 2. Consequently, one can write:

S 1 − S 12 = S 1 − S 1S 2,

S 1 − S 12 = S 1 (I − S 2) , (42)

with I the identity matrix. In addition, proposition 2 states that if m2 is a sbba, then one has S 2 = w̄2S A2 + w2I with
S A2 a the specialization matrix of the categorical bba on A2. Using this result in equation (42) yields:

S 1 − S 12 = S 1
(
I − w̄2S A2 − w2I

)
,

S 1 − S 12 = S 1
(
w̄2I − w̄2S A2

)
S 1 − S 12 = w̄2

(
S 1 − S 1S A2

)
. (43)

An immediate consequence of equation (43) is that :

dS (m1,m1 ∩©m2) = w̄2dS
(
m1,m1 ∩©mA2

)
. (44)

This result can be applied as well to m3:

dS (m1,m1 ∩©m3) = m3 (A2) dS
(
m1,m1 ∩©mA2

)
,

dS (m1,m1 ∩©m3) = (1 − (1 − a + aw2)) dS
(
m1,m1 ∩©mA2

)
,

dS (m1,m1 ∩©m3) = aw̄2dS
(
m1,m1 ∩©mA2

)
. (45)

Finally, dividing each term of equation (45) by those of (44) gives:

dS (m1,m1 ∩©m2)
dS (m1,m1 ∩©m3)

=
m2 (A2)
m3 (A2)

= a.
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3.3.3. Maximal distance interpretation
Proposition 5. Suppose a frame of discernment Ω. The following relation holds for the distance dS :

dS (m1,m2) = 1⇔ m1 = mA1 ,m2 = mA2 with A1 = Ω \ A2. (46)

Proof. The two implications will be proved separately:

• Suppose m1 and m2 are two bbas on Ω such that dS (m1,m2) = 1. By definition of Loudahi distance, one has:∑
A,B⊆Ω

(
S m1 (A, B) − S m2 (A, B)

)2
= 2 (2n − 1) ,

with n the cardinal of Ω. Since for all bba mi, one has S mi (∅, ∅) = 1, the above expression writes as follows:∑
B=⊆Ω

B,∅

∑
A⊆Ω

(
S m1 (A, B) − S m2 (A, B)

)2
= 2 (2n − 1) .

As there is exactly 2n − 1 possible choices left for B, we have:

∑
B=⊆Ω

B,∅

2 −∑
A⊆Ω

(
S m1 (A, B) − S m2 (A, B)

)2

 = 0. (47)

Now, let us expand the following expression:∑
A⊆Ω

(
S m1 (A, B) − S m2 (A, B)

)2
=

∑
A⊆Ω

S m1 (A, B)2 − 2S m1 (A, B) S m2 (A, B) + S m2 (A, B)2 .

Since all elements of specialization matrices are positive, one has:∑
A⊆Ω

(
S m1 (A, B) − S m2 (A, B)

)2
≤

∑
A⊆Ω

S m1 (A, B)2 + S m2 (A, B)2 .

In addition, all elements of specialization are less or equal to 1, which implies that for all A, B one has
S mi (A, B)2 ≤ S mi (A, B). This allows us to write:∑

A⊆Ω

(
S m1 (A, B) − S m2 (A, B)

)2
≤

∑
A⊆Ω

S m1 (A, B) + S m2 (A, B) .

Moreover, any specialization matrix S mi is such that for all B,
∑

A⊆Ω S mi (A, B) = 1, hence the following expres-
sion: ∑

A⊆Ω

(
S m1 (A, B) − S m2 (A, B)

)2
≤ 2,

2 −
∑
A⊆Ω

(
S m1 (A, B) − S m2 (A, B)

)2
≥ 0 (48)

Using equation (48), expression (47) turns out to be a sum of positive terms. As this sum equals zero, it means
that all of its terms equal zero. Consequently, one has:

∀B ⊆ Ω and B , ∅,
∑
A⊆Ω

(
S m1 (A, B) − S m2 (A, B)

)2
= 2. (49)
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Let us use equation (49) with B = Ω. In particular, one can write:

2 =
∑
A⊆Ω

(
S m1 (A,Ω) − S m2 (A,Ω)

)2 ,

2 =
∑
A⊆Ω

(
S m1 (A,Ω)2 − S m1 (A,Ω) S m2 (A,Ω) + S m2 (A,Ω)

)2
,

2

1 +
∑
A⊆Ω

S m1 (A,Ω) S m2 (A,Ω)

 =
∑
A⊆Ω

(
S m1 (A,Ω)2 + S m2 (A,Ω)2

)
.

As any specialization matrix is such that ∀A, S mi (A,Ω) = mi (A), one can write:

2

1 +
∑
A⊆Ω

m1 (A) m2 (A)

 =
∑
A⊆Ω

(
m1 (A)2 + m2 (A)2

)
.

The fact that for any bba mi,
∑

A⊆Ω mi (A)2 ≤ 1 has already been used earlier in this proof. Let us now make the
following additional assumption: m1 is not a categorical bbas. This assumption implies that ∀A ( Ω, m1 (A) < 1
and consequently

∑
A⊆Ω m1 (A)2 < 1. This would imply:

2

1 +
∑
A⊆Ω

m1 (A) m2 (A)

 < 2,

which is impossible. Consequently, m1 is a categorical bba on a set denoted by A1. The same reasonning holds
for m2, which is a categorical bba on a set denoted by A2.
Finally, let us make the following additional assumption: ∃A3 , ∅ such that A3 = Ω \ (A1 ∪ A2). One can apply
relation (49) with B = A3. In particular, one can write:∑

A⊆Ω

(
S m1 (A, A3) − S m2 (A, A3)

)2
= 2. (50)

By definition of specialization matrices, one has: S mi (A, A3) = mi (A|A3) with mi (.|A3) the bba mi after con-
ditionning by A3. But since m1 and m2 are categorical bbas and A1 ∩ A3 = ∅ and A2 ∩ A3 = ∅, we have
m1 (.|A3) = m2 (.|A3) = m∅, the total conflict bba. This result implies that

∑
A⊆Ω

(
S m1 (A, A3) − S m2 (A, A3)

)2
= 0

which is in contradiction with equation (50). Consequently, the assumption is wrong, meaning that A1 = Ω\A2.

• Suppose m1 is a categorical bba on the set A1, m2 is a categorical bba on the set A2 and A1 ∩ A2 = ∅. By
definition of Loudahi distance, one has:

dS (m1,m2) =
1

2 (2n − 1)

∑
A,B⊆Ω

(
S m1 (A, B) − S m2 (A, B)

)2 ,

with n the cardinal of Ω. Applying equation (24) of proposition (2) for both m1 and m2 yields:

dS (m1,m2) =
1

2 (2n − 1)

∑
A,B⊆Ω

(
1A1∩B=A − 1A2∩B=A

)2 .

Since A1 ∩ A2 = ∅, A cannot be a subset of both A1 and A2 unless A = ∅. One can thus write:

dS (m1,m2) =
1

2 (2n − 1)

 ∑
A,∅,B⊆Ω

1A1∩B=A +
∑

A,∅,B⊆Ω

1A2∩B=A + 4
∑
B⊆Ω

1A1∩B=A2∩B=∅

 .
As A1 = Ω \ A2, there is no such B with A1 ∩ B = A2 ∩ B = ∅. The expression reduces thus to:

dS (m1,m2) =
1

2 (2n − 1)

 ∑
A,∅,B⊆Ω

1A1∩B=A +
∑

A,∅,B⊆Ω

1A2∩B=A

 .
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Computing the two remaining sums boils down to a counting problem. For each of these sums, there are 2n − 1
choices for set A and choosing A sets B. Consequently, one has:

dS (m1,m2) =
1

2 (2n − 1)
(2n − 1 + 2n − 1) ,

dS (m1,m2) = 1.

From the property 3, one can easily prove that dS (m1,m2) = 1 only when the bba m1 is the negation of m2 and
both are categoric; ∃A ⊆ Ω : m̄1(A) = m2(Ā) = 1. Jousselme’s distance, also Tessem’s distance, is equal to 1 when
the two compared bba’s are categoric and completely conflicting; m1(A1) = m2(A2) = 1 and A1 ∩ A2 = ∅. So, the
specificity of the compared focal elements is not questioned in this case. This behaviour seems to be weaker than the
above achieved by dS because the negation condition is not respected.

In the next section, we will discuss the behaviour of our distance compared to the well known classically estab-
lished distances in the belief functions theory.

4. Belief function distance comparison

The distances defined so far in the belief functions theory behave differently when they compare two bba’s. Each
of them has some particular features needed to achieve the requested objectives. In the sequel, we show the behaviour
of the main established distances in the belief functions theory ,dJ , dT , dZD and dIF2, then we compare them to the
distance we introduced in this paper dS .

Example 2. In this example, the convergence of the different compared distances is questioned when comparing non
conflicting bba’s. A similar example is proposed in [7] and reused in [9]. Given two bba’s defined in an ordered
frame of discernment of cardinality |Ω| = 8 such as:

m1({ω1, ω2, ω3}) = 1
m2(At) = 1

The subset At varies by successive inclusion of a singleton at each step from {ω1} to reach Ω at the last step of
computation. The results are shown in the figure (1).

Figure 1: Dissimilarities between m1 and m2 - Example 2

In the example 2, the total mass assignment is attributed by the bba m1(.) to the subset {ω1, ω2, ω3}. Whereas,
the bba m2(.) attributes its total mass assignment to the variable proposition At. Then, all the dissimilarity measures
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shown in this example present a similar behaviour and converge to their minimum value at the third step, when the
two bba’s believe that the truth is supported by the same focal element when At = {ω1, ω2, ω3}. The conflict degree
is null at all the experience steps. One can also remark that the distances studied take into account the cardinality of
the subset At in their variation. This means that the structural dissimilarity is taken into account by all the compared
measures.

Example 3. In this example, two different situations are observed, (1) totally conflicting bba’s and (2) non-conflicting
bba’s. The maximal distance interpretation property of the proposed distance dS is highlighted in this example. The
behaviour of the studied distances varies from the maximum value (total divergence) to the minimum value (total
convergence). The specificity of the compared bba’s is questioned in the two observed situations. A similar example
is proposed in [7]. Given two bba’s defined in an ordered frame of discernment of cardinality |Ω| = 8 such as:

m1({ω8}) = 1
m2(At) = 1

The subset At variates by successive inclusion from {ω1} to Ω, then its first element is subtracted at each step
varying from Ω to ω8.

Figure 2: dissimilarities between m1 and m2 - Example 3

In the example 3, m1 supports {ω8} while m2 supports the varying subset At. One can see that from step 1 to 7, |At |

is increasing and At∩{ω8} = ∅. At step 7, At is the complementary set of {ω8} in Ω. From step 8 to 15, |At | is decreasing
and At ⊇ {ω8}. At step 15 At = {ω8}. Analysing the results provided from the different distances summarized in figure
(2), one can see that all the measures are null at the 15th step when At = {ω8}. Zouhal and Denœux’s distance, dZD, is
persistently decreasing from 1 to 0 during all the computation steps. This result does not take care of the different parts
of the simulation. The Jousselme’s distance, d j, is equal to 1 along the steps 1 to 7 (At∩{ω8} = ∅). So, dJ does not take
into account the variation of the specificity of At during these steps. From step 7 to 15, dJ is decreasing and reaches
zero at step 15, when the two compared bba’s support the same focal element. Tessem’s distance behaves similarly
as Jousselme’s distance during all the simulation steps. The new proposed distance in this paper, dS , presents more
suitable results since it is still increasing from step 1 to 7 At ∩ {ω8} = ∅ taking into account the specificity variations
of At. It reaches the maximum value when At and {ω8} are complementary in Ω. It is also decreasing as soon as the
two subsets supported by the compared bba’s are closer. dS = 0 when At = {ω8}.

Example 4. This example was proposed in [9]. The behaviour of the different distances with the increase of the
cardinality of the frame of discernment is observed. The specificity and the commitment of the compared bba’s are
jointly questioned. Let’s be Ω = {ω1, ω2, · · · , ωn} a frame of discernment satisfying the Shafer’s model. Three bba’s
are so defined in Ω as :
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m1({ωi}) = 1
n , ∀i ∈ {1, · · · , n}.

m2(Ω) = 1.
m3({ωk}) = 1, for some k ∈ {1, · · · , n}.

The behaviour of the different dissimilarity measures studied in the example are visualized in the figure (3).

Figure 3: dissimilarities between m1, m2 and m3 - Example 4

The behaviour of the dissimilarity measures studied in this paper with the increase of the cardinality of Ω is shown
in the figure (3). The horizontal axis of the graphics represent the values of n. One can see, in this example, that
m1(.) and m2(.) are different. They represent both two different uncertain sources while m3(.) is absolutely confident
in ωk. m1(.) is a uniform Bayesian Belief assignment whereas the bba m2(.) is less specific since it is a vacuous belief
assignment. In figure (3b), Jousselme’s distance cannot discriminate the difference between two different situations
dealing with the specificity of the informations and the commitment of the sources. This result is observed while
dJ(m1,m2) = dJ(m1,m3). Zouhal’s distance shows a completely different behaviour. In figure (3d), one can see that
dZD((m1,m2) = 0. The same result is provided with Tessem’s distance in figure (3c). This behaviour can not make a
difference between m1(.) and m2(.) despite of the difference in the structure of the two bba’s and the specificity of the
informations provided by the two sources. One can also see that the two compared bba’s present the same problem
dealing with the lake of commitment. The measure dIF2,shown in figure (3e), can explicitly discriminate the three
compared bba’s in the present example when n , 2 but the behaviour of each measure provided from dIF2 is different
from each other when n is still increasing. In figure (3a), one can see that the new established distance in this work,
dS , is increasing with the increase of the frame of discernment size n. It is also able to discriminate clearly the three
situations presented in this example.

Example 5. This example was proposed in [9]. It shows the principal difference between distances ans pseudo
distances and also the incapacity of certain distances to discriminate a well different comparison situations between
bba’s. Given three bba’s defined over a frame of discernment Ω = {ω1, ω2, ω3} as shown in table 4.

The different results of the dissimilarity measures are given in table 5.
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Table 4: Different values of the bba’s m1(.), m2(.) and m3(.) - Example 5
focal element ∅ ω1 ω2 {ω1, ω2} ω3 {ω1, ω3} {ω2, ω3} Ω

m1(.) 0 0.3333 0.3333 0 0.3333 0 0 0

m2(.) 0 0.1 0.1 0 0.1 0 0 0.7

m3(.) 0 0.1 0.1 0 0.8 0 0 0

Table 5: Different dissimilarity measures between m1(.), m2(.) and m3(.) - Example 5
Distances d(m1,m2) d(m1,m3) d(m2,m3)

dJ 0.4041 0.4041 0.5715
dT 0 0.4667 0.4667

dZD 0 0.4041 0.4041
dIF1 0.7000 0.3111 0.7000
dIF2 0.1167 0.3300 0.3500
dIF3 0.3500 0.3300 0.3500

d 0.4950 0.3500 0.6062

One can see that m1(.) is equivalent to a uniform Bayesian distribution. The bba m2(.) attributes the large part of
its mass assignment to the total ignorance whereas m3(.) believes mostly in the singleton ω3. In [9], The authors have
only observed the two first columns of table 5. In our work we make a more complete analysis by observing all the
results of the distances provided from the example 5. A preliminary analysis shows that it is impossible to make a
rational decision from m1(.) and m2(.) because of the uniform Bayesian distribution for the first and the large mass
assignment given to the total ignorance while the other part of assignment is equally divided between the singletons
for the farmer. These two bba’s yield the same problem in the viewpoint of decision making despite the fact that
they are very different in term of specificity of their informational content. Conversely, m3(.) assigns its large mass
assignment to the hypothesis ω3.
The results obtained using Jousselm’s distance show that dJ(m1,m2) = dJ(m1,m3). This is not satisfactory because one
can see that m1(.) is more similar to m2(.) than m3(.) in the viewpoint of commitment and decision making. Otherwise,
m1(.) is more similar to m3(.) than m2(.) in the viewpoint of specificity. Analysing the results of dZD one can see
that dT (m1,m2) = 0 where m1 , m2. This implies that dT does not take care of the property (P3) provided from the
definition 5. the same behaviour is also observed from the results of dZD. The results dIF1(m1,m2) = dIF1(m2,m3),
also dIF3(m1,m2) = dIF3(m2,m3), are not satisfactory for the same reason as given for the results of dJ . Only dIF2
and dS can provide acceptable results discriminating clearly the different compared bba’s regarding their particular
structures in this example.

Example 6. We especially develop this example to prove that the intuitionistic measure dIF2 is a pseudo-distance and
to show that the distance introduced in this paper provides suitable results in more general cases. Given three bba’s
defined in a frame of discernment Ω = {ω1, ω2, ω3} as shown in table 6.

Table 6: Different values of bba’s m1(.), m2(.) and m3(.) - Example 6
focal element ∅ ω1 ω2 {ω1, ω2} ω3 {ω1, ω3} {ω2, ω3} Ω

m1(.) 0 0.3 0.5 0 0 0.1 0 0.1

m2(.) 0 0.2 0.4 0.2 0 0.1 0 0.1

m3(.) 0 0.2 0.4 0 0 0.1 0.2 0.1

The resulting dissimilarity measures are summarized in the table 7.
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Table 7: Diffrent dissimilarity measures between bba’s m1(.), m2(.) and m3(.) - Example 6
Distances d(m1,m2) d(m1,m3) d(m2,m3)

dJ 0.1000 0.1414 0.1633
dT 0 0.1000 0.1000

dZD 0 0.1000 0.1000
dIF1 0.1333 0.1667 0.1333
dIF2 0 0.0816 0.0816
dIF3 0.0816 0.1000 0.0816

d 0.1118 0.1414 0.1732

Analyzing the three bba’s in the viewpoint of decision making, one can see that they are in agreement and sup-
port the same hypothesis ω2. One can also observe that the measures dT , dZD and dIF2 provide a zero value when
comparing the two structurally different bba’s m1 and m2. These same dissimilarity measures provide also the same
value when comparing separately each of the bba’s m1 and m2 to another one (m3 for example). These two results are
not satisfactory and not convenient because the property (P3) of definition 5 is not satisfied. Conversely to the above
results, only dJ and ds can clearly discriminate the three compared bba’s.

In the light of the results given by the above simulation examples, some critical conclusions are made. One can
observe that the studied measures are satisfactory in general use but they suffer from some drawbacks and provide
a not satisfactory results in some special situations. For example, the measures dT , dZD and dIF2 do not satisfy the
property (P3) of definition 5.

5. Conclusions

6. Appendices

6.1. Proofs of the main properties

Given three basic belief assignments m1, m2 and m3, which Dempsterian specialisation matrices are respectively
Sm1 , Sm2 and Sm3 , and ∀ α ∈ [0, 1] a discounting coefficient.

1. Definiteness:
If m1 = m2, then Sm1 = Sm2 and also :

d(m1,m2) =
1
ρ
‖ Sm1 − Sm2 ‖F

=
1
ρ
‖ Sm1 − Sm1 ‖F

⇒ d(m1,m2) = 0.

because ‖ 0n ‖F= 0, and 0n a null matrix of size n ≥ 1.

If d(m1,m2) = 0 then ‖ Sm1 − Sm2 ‖F= 0.
this implies that:

2|Ω|∑
i=1

2|Ω|∑
j=1

[
(S m1 )i j − (S m2 )i j

]2
= 0

and this is only possible if: (S m1 )i j = (S m2 )i j ∀ i, j ∈ {1, 2, ..., 2|Ω|}.
so we conclude that

Sm1 = Sm2

and finally :
m1 = m2
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2. Symmetry :
∀ m1 and m2, the following holds:

d(m1,m2) =
1
ρ
‖ Sm1 − Sm2 ‖F

=
1
ρ
‖ (−1)(Sm2 − Sm1 ) ‖F

=
| − 1|
ρ
‖ Sm2 − Sm1 ‖F

And finally the property of symmetry is proved :

d(m1,m2) = d(m2,m1)

3. Non-negativity and normalisation:

(a) Non-negativity

d(m1,m2) =
1
ρ
‖ Sm1 − Sm2 ‖F

One can obviously say that: ‖ Sm1 − Sm2 ‖F≥ 0, ∀ A ⊆ Ω
1
ρ
> 0, ∀ ρ > 0.

so, the following holds:
1
ρ
‖ Sm1 − Sm2 ‖F≥ 0

in other words :
d(m1,m2) ≥ 0 ∀m1,m2 defined on Ω and ρ > 0.

(b) Normalisation

d(m1,m2) =
1
ρ
‖ Sm1 − Sm2 ‖F

=
1
ρ

( 2|Ω|∑
i=1

2|Ω|∑
j=1

[
(S m1 )i j − (S m2 )i j

]2) 1
2

It is obvious that ∀ m1 and m2 defined on Ω, we can obtain for j = 1 :

2|Ω|∑
i=1

[
(S m1 )i1 − (S m2 )i1

]2
= 0

the dissimilarity measure can be rewritten as:

d(m1,m2) =
1
ρ

( 2|Ω|∑
i=1

2|Ω|∑
j=2

[
(S m1 )i j − (S m2 )i j

]2) 1
2

The distribution of the power of 2 results:

d(m1,m2) =
1
ρ

( 2|Ω|∑
i=1

2|Ω|∑
j=2

[
(S m1 )2

i j + (S m2 )2
i j − 2.(S m1 )i j.(S m2 )i j

]) 1
2

≤
1
ρ

( 2|Ω|∑
i=1

2|Ω|∑
j=2

[
(S m1 )2

i j + (S m2 )2
i j

]) 1
2
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because 2.(S m1 )i j.(S m2 )i j ≥ 0 ∀ m1,m2.
and since (S m1 )i j ∈ [0, 1], one can obtain (S m1 )2

i j ≤ (S m1 )i j ∀m1 (it is the same case for (S m2 )i j).
This result allows:

d(m1,m2) ≤
1
ρ

( 2|Ω|∑
j=2

[ 2|Ω|∑
i=1

(S m1 )i j +

2|Ω|∑
i=1

(S m2 )i j

]) 1
2

≤
1
ρ

( 2|Ω|∑
j=2

[
1 + 1

]) 1
2

≤
1
ρ

([
(2|Ω| − 1) + (2|Ω| − 1)

]) 1
2

We can so conclude that:
0 ≤ d(m1,m2) ≤

1
ρ
.2.(2|Ω| − 1), ∀ m1,m2

For normalizing the distance, the coefficient ρ must be defined as follow:

ρ = 2.(2|Ω| − 1). (51)

Consequently, one can write:
0 ≤ d(m1,m2) ≤ 1, ∀ m1,m2

4. The triangle inequality:

d(m1,m2) =
1
ρ
‖ Sm1 − Sm2 ‖F

=
1
ρ
‖
(
Sm1 − Sm3

)
+

(
Sm3 − Sm2

)
‖F

≤
1
ρ

[
‖ Sm1 − Sm3 ‖F + ‖ Sm3 − Sm2 ‖F

]
⇒ d(m1,m2) ≤ d(m1,m3) + d(m3,m2)

5. The distance between two bba’s discounted with the same rate factor is calculated as follow:

d(αm1,
α m2) =

1
ρ
‖ αSm1 −

α Sm2 ‖F

=
1
ρ
‖
(
(1 − α)Sm1 + αI

)
−

(
(1 − α)Sm2 + αI

)
‖F

=
1
ρ
‖ (1 − α)

(
Sm1 − Sm2

)
‖F

= (1 − α)d(m1,m2)
⇒ d(αm1,

α m2) ≤ d(m1,m2)

One can see that the distance between the two same rate discounted bba’s is smaller than the distance between
the two original bba’s.

6. Conjunctive rule and distance.
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Given:

d(m1 ∩©2,m1) =
1
ρ
‖ Sm1 .Sm2 − Sm1 ‖F

=
1
ρ
‖ Sm1 .(Sm2 − I) ‖F

≤
1
ρ
‖ Sm2 − I ‖F . ‖ Sm1 ‖F

⇒ d(m1 ∩©2,m1) ≤ ‖ Sm1 ‖F .d(m2,mΩ)

Note that if m2 moves to ignorance, the bba resulting from the combination of m1 and m2 is moving to m1 with a
ratio ‖ Sm1 ‖F . In other words, the variation of the distance between the bba m1 and the result of its conjunctive
combination with the bba m2 is at most ‖ Sm1 ‖F times faster than than the variation of the distance between m2
and the vacuous bba which is the neutral element of the conjunctive combination.

7. Discounting based triangle inequality:

d(αm1,m2) =
1
ρ
‖ αSm1 − Sm2 ‖F

=
1
ρ
‖
(
(1 − α)Sm1 + αI

)
− Sm2 ‖F

=
1
ρ
‖ (1 − α)

(
Sm1 − Sm2

)
+ (α)

(
I − Sm2

)
‖F

⇒ d(αm1,m2) ≤ (1 − α)d(m1,m2) + αd(m2,mΩ)

This property leads to another form of specific triangle inequality which is closely linked to the discounting
operator.
One can note that the equality holds for the extreme cases, otherwise, the cases where α = 1, m1 = m2 and/or
m2 = mΩ.

(a) If α = 1, then αm1 = mΩ.
One obtains

d(1m1,m2) = d(mΩ,m2)

(b) if m1 = m2:

d(αm1,m1) =
1
ρ
‖α Sm1 − Sm1 ‖F

=
1
ρ
‖
(
(1 − α)Sm1 + αI

)
− Sm1 ‖F

=
1
ρ
‖ α

(
I − Sm1

)
‖F

⇒ d(αm1,m1) = αd(m1,mΩ)
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(c) If m2 = mΩ:

d(αm1,mΩ) =
1
ρ
‖ αSm1 − I ‖F

=
1
ρ
‖
(
(1 − α)Sm1 + αI

)
− I ‖F

=
1
ρ
‖ (1 − α)

(
Sm1 − I

)
‖F

⇒ d(αm1,mΩ) = (1 − α)d(m1,mΩ)

This property is graphically interpreted in the figure (7)

Figure 4: Geometrical interpretation of the 7th property

8. Given :

(1 − α)d(m1,m2) =
1 − α
ρ
‖ Sm1 − Sm2 ‖F

=
1
ρ
‖ (1 − α)

(
Sm1 − Sm2

)
‖F

=
1
ρ
‖ (1 − α)Sm1 + αI − Sm2 − α

(
I − Sm2

)
‖F

=
1
ρ
‖
(α

Sm1 − Sm2

)
+ α

(
Sm2 − I

)
‖F

≤ d(αm1,m2) + αd(m2,mΩ)m1,m2)

then
⇒ (1 − α)d(m1,m2) − αd(m2,mΩ) ≤ d(αm1,m2)
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The two last properties can be summarized in the following :

|d(αm1,m2) − (1 − α)d(m1,m2)| ≤ αd(m2,mΩ)
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