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Abstract. Mammogram is the standard modality used for breast cancer screening.

Computer Aided Detection (CAD) approaches are helpful for improving breast cancer

detection rates when applied to mammograms. However, automated analysis of

mammogram often leads to inaccurate results in presence of the pectoral muscle.

Therefore, it is necessary to first handle pectoral muscle segmentation separetely before

any further analysis of a mammogram. One difficulty to overcome when segmenting

out pectoral muscle is its strong overlapping with dense glandular tissue which tampers

with its extraction. This paper introduces an automated two step approach for pectoral

muscle extraction. The pectoral region is firstly estimated through segmentation by

mean of a modified Fuzzy C-Means clustering algorithm. After contour validation, the

final boundary is delineated through iterative refinement of edge point using average

gradient. The proposed method is quite simple in implementation and yields accurate

results. It was tested on a set of images from the MIAS database and yielded results

which compared to those of some state-of-the-art approaches, were better.
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1. Introduction

Mammography is the standard method used for breast cancer screening. During

screening campaigns, a huge amount of images is collected. These mammograms are

to be analyzed by a few radiologists. Computer aided detection (CAD) has therefore

been introduced to relieve radiologists workload by providing a first aid opinion and

improving detection rates (Reddy and Given-Wilson, 2006). In this case, CAD consists

of an automatic analysis of images in order to extract or identify patterns in breast

region which can facilitate earlier breast cancer detection.

In most CAD systems, a prior extraction of patterns like breast contour (Feudjio et al.,

2012; Karnan and Thangavel, 2007; Liu et al., 2011), nipple (Karnan and Thangavel,

2007) and pectoral muscle (Ferrari et al., 2004; Kwok et al., 2004; Liu et al., 2011) have

to be carried out to allow accurate analysis of breast tissues. In this paper, we focus

on the pectoral muscle extraction step. Pectoral muscle mainly appears in MLO view

mammograms. Roughly speaking, it is assumed to be a triangular region with high grey

levels intensities located at the upper left corner of the breast region, provided that the

breast is right oriented in the image. In cranio-caudal (CC) view, pectoral muscle is

found only in 30%-40% of cases (Eklund et al., 1994). If present, the pectoral muscle

covers a little area and does not meaningfully impair automatic analysis of CC view

mammograms.

Pectoral muscle is a high density tissue, thereby leading to grey level intensities and

texture characteristics similar to masses and microcalcications. It is consequently hard

to automatically and jointly characterize fibro-glandular tissues, dense structures in

breast region as well as masses and microcalcifications in raw mammogram images. Both

texture based methods (Ferrari et al., 2004) and breast tissue density based methods

(Karssemeijer, 1998; Saha et al., 2001) for mammogram analysis are impaired by the

presence of the pectoral muscle. Reliable and discriminative features cannot be extracted

which accounts for both false positives and false negatives. False negative number is all

the larger as the overlap region between the pectoral muscle and glandular tissues is a

common area for cancer to develop and is particularly checked by radiologists to reduce

the rate of missed cancers.

Another interest of extracting pectoral muscle is that its contour is used as landmark for

registration (Ma et al., 2007) in mammograms comparison or as three-dimensional axis

required for breast reconstruction from multi-views of mammograms (Zhou et al., 2010;

Kwok et al., 2004). In view of all these motivations, segmenting out pectoral muscle

in MLO view mammograms is a justified preprocessing step to improve computerized

aided analysis for breast cancer detection.

1.1. Related works

Several major difficulties to overcome for automatic extraction of pectoral muscle in

mammograms are known:

- There is a strong overlap with fibro-glandular tissues that makes it difficult to reliably
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characterize the pectoral muscle image region.

- Some skin folding tampering with the pectoral muscle contour can be found.

- X-ray images tend to produce blur edges for pectoral muscles espcially in its lower

part.

- There is a high variabilty of region surface ; the most tedious cases are met when the

pectoral mucle covers a very small area or is completely missing.

These various and complex factors illustrate how difficult it is to automatically extract

pectoral muscle in mammograms (Zhou et al., 2010).

Many approaches dealing with pectoral muscle extraction have been introduced in the

literature. Suckling et al. (1995) extracted pectoral muscle by segmenting a mammogram

in four main type of components which includes background, pectoral muscle, fibro-

glandular region and adipose region using a multiple linked self-organizing neural

network. A semi-automatic method introduced by Saha et al. (2001) requires an input

from an operator to locate the pectoral muscle and therefore its delineating was then

performed automatically. Raba et al. (2005) used region growing method to extract

pectoral muscle. However, their results were assessed only visually and rated on a two

scale grade (adequate and quite adequate).

Another commonly used approach consists of estimating the boundary between pectoral

muscle and mammary tissues as a straight line by the use of Hough transform (Ferrari

et al., 2004; Karssemeijer, 1998). The main drawback of this method is that the pectoral

muscle edge is not always straight and may sometimes present concavities. To cope with

this inconvenient Kwok et al. (2004) firstly estimated the straight line delineating the

pectoral muscle using iterative thresholds and then refined this line by cliff detection to

be aligned on the pectoral muscle boundary curvature.

Other algorithms developed for extraction of pectoral muscle are based on texture-field

orientation (Zhou et al., 2010), wavelets decomposition (Mustra et al., 2009), Gabor

wavelets (Ferrari et al., 2004) and non linear filtering (Mirzaalian et al., 2007). In

these approaches, the final pectoral muscle contour is obtained by thresholding of the

line segments or candidate regions based on shape and size criteria. Chakraborty et al.

(2012) introduced a method based on the average of gradient to extract pectoral muscle.

They used a weighted average gradient and adaptive band selection to approximate the

straight line edge of the pectoral muscle and local gradient to adjust the line to the edge

of the pectoral muscle.

Recently, a new image segmentation approach based graph theory has been introduced.

This approach relies on the assumption that the pectoral muscle region boundary has its

two extremities in the first row of the image and the first non blank column respectively.

These extremities are called end-points and the shortest path between two endpoints

is searched by minimization of a cost-function. Domingues et al. (2010) estimated the

pectoral muscle contour as the shortest path throughout the two end-points in the

image gradient. The latter is represented as a weighted graph where nodes are pixels

and edges are connecting neighbourhood pixels. Finally the shortest path is found

by mean of a Support Vector Machine (SMV) previously trained. Ma et al. (2007)
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introduced another graph theory approach based on adaptive pyramids and spanning

trees to extract pectoral muscle.

It is noteworthy that most of these works were tested on small datasets and that

the accuracy of their algorithms was based on visual inspection. Moreover, only few

perfomance metrics are provided. In this work, we report our results compared to a

gold standard and attempt to provide a set of performance metrics covering all those

chosen in orther studies in oder to make algorithms performance comparison easier.

The analysis of this litterature review shows how complex it is to extract the pectoral

muscle and that its boundary cannot be retrieved through a straightforward method.

Commonly (Chakraborty et al., 2012; Kwok et al., 2004; Ma et al., 2007), the extraction

is done in two main steps. The pectoral region frontier is roughly estimated based on

gray level homogeneity or a priori information on the pectoral muscle location. The

boundary is then refined by selection of segment candidate or research of the shortest

path (Ma et al., 2007; Zhou et al., 2010), or cliff detection using gray level variation

(Kwok et al., 2004). In this paper, we also introduce an approach based on these two

steps. The pectoral region is firstly estimated using a modified version of the Fuzzy C-

Means (FCM) algorithm. Secondly, for each contour pixel of the estimated region, the

actual pectoral muscle boundary is sought along the orthogonal direction to the contour

by mean of average gradient. In the following subsection, a more detailed outline of our

approach is given.

1.2. Proposed method outline

The flowchart of the proposed method is presented in figure 1. Regarding pectoral

muscle layouts in mammograms, we make the following reasonable assumption: Pectoral

muscle appears at only two different locations in mammograms considering left or right

breast. Therefore, a pre-processing is needed so that the pectoral muscle lies at the

same location (upper left corner). The symmetry performed here aims at reducing

programming complexity. By convention, only images with left oriented breast have to

be flipped sideways. After this step, a region of interest (ROI) is defined on the basis

that the pectoral muscle lies at upper left corner. This ROI is obtained using a heuristic

based on a priori knowledge on women anatomy and mammography protocol. Defining

a ROI allows to reduce the area of research and the computation time while ensuring

better segmentation results.

Once the ROI is obtained, it can be segmented into regions. The only pieces of

information available for segmentation are textures and gray levels intensities (Zhou

et al., 2010). However, as mentionned before, texture and gray level features are not

very discriminative. The feature distributions of the regions are overlapping. The

FCM segmentation algorithm was introduced to deal with such data. In this work, we

estimated the pectoral muscle with a modified version of Fuzzy C-Means (mFCM). The

standard FCM algorithm has been modified so that it could advoid random initialization

of clusters to speed up the clustering. The mFCM also uses local information in
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Figure 1. Flowchart of the proposed method for pectoral muscle detection

membership function to better classify noisy pixel particularly those located on the

vicinity of the pectoral edge.

The segmentation step provides us with an approximation of the pectoral muscle

boundary. In some cases, the lower part of the pectoral muscle completely overlaps with

glandular tissue leading to an inaccurate pectoral region estimation. The pectoral region

is overestimated and its contour deviates from the true boundary towards breast tissue.

To cope with this difficulty a post-processing step for contour refinement is needed.

Angle curvatures are computed at each point of the contour. Starting from image top

contour point, each next contour point is processed as follows: if the contour point

curvature is abnormally high, the following contour point are replaced using a tangent

line computed from the nearest non-deviating contour points. Finally, the contour is

iteratively refined by using average gradient to accurately estimate the points of the

pectoral edge.
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2. Materials and methods

2.1. Materials

2.1.1. Dataset. The proposed method was tested on 277 images selected from the mini-

MIAS database (Suckling et al., 1994). This open database was chosen because it is the

most widely used in the literature dealing with pectoral muscle extraction. It therefore

allows an easy comparison of our results with those of other methods. All images in

this database are MLO views mammograms digitized at 200 µm and 8-depth resolution.

The images are 1024x1024 pixels size and were further subsampled to 512x512. The

images not presenting the pectoral muscle as well as those having a band tape or very

poor contrast quality were not included to the study. Following this pre-selection policy,

only 45 images out of 322 were discarded. The selected images were acquired from 157

patients whereas the 83 images used for inter-observer variability study were a subset

of the selected images.

2.1.2. Radiologists’ expertise as reference standard. The coordinates of the radiologist’s

drawn boundaries of pectoral muscle of images used in (Ferrari et al., 2004) as well as

coordinates of pectoral muscle obtained by theirs algorithms were kindly provided by

Rangayyan so that our results could be compared to the same standard. To extend

the experiment to the whole database, another radiologist manually drew the pectoral

muscle contour of all mammograms in the dataset. His expert work was used as reference

standard for evaluation of the computed performances of pectoral muscle extraction. An

inter-obsever variabilty was conducted to evaluate the agrement between the two hand-

drawn pectoral muscle boundaries for the set of images used in (Ferrari et al., 2004).

This inter-observer varibility shows a strong correlation between the two hand-drawn

as described in section 3.2. The performances of the proposed method is assessed on

several criteria as defined in the next section.

2.1.3. Performance metrics The accuracy of the pectoral muscle detection is evaluated

by the following performance metrics:

(1) false positive (FP) and false negative (FN) rates, which evaluate pixel assignment

errors. A FP pixel is one assigned by the algorithm as belonging to the pectoral muscle

but assigned by the radiologist outside of the pectoral muscle. A FN pixel is one assigned

outside of the pectoral muscle by the algorithm but assigned inside by the radiologist.

The FP and FN rates for an image are computed as follows:

FP =
| AC ∪ AR | − | AR |

| AR |

FN =
| AC ∪ AR | − | AC |

| AR |

where AC and AR are the areas of the pectoral muscle regions obtained by the algorithm

and the radiologist respectively.
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(2) Percent Overlap Area (POA), which expresses the accuracy of the region delineated

by the algorithm to the reference one drawn by the radiologist. It is defined as:

POA =
AC ∩ AR

AC ∪ AR

(3) The Hausdorff distance (Hdist), which is used to estimate the discrepancy and the

dissimilarity of the detected boundary by the algorithm with the one drawn by the

radiologist. It is defined as:

Hdist = max{maxi∈(1,...,p){minj∈(1,...,q){Dist(ci, rj)}},
maxj∈(1,...,q){mini∈(1,...,p){Dist(rj, ci)}}}

where ci and rj are contour points obtained by the algorithm and the radiologist

respectively, Dist(ci, rj) is the Euclidean distance between points ci and rj calculated

in pixel units (1pixel=0.4mm).

These metrics are widely used thereby allowing a fair comparison with related works.

There are also complementary and can thus catch every aspects of image segmentation

performances.

2.2. Methods

2.2.1. Pre-processings. In order to make the segmentation task easier, a ROI is

extracted in the upper left corner of the image as illustrated in figure 2. But, as the

pectoral muscle does not always lie at that location, breast orientation needs first to

be retrieved. Consequently, our algorithm starts with a pre-processing step which aims

at producing mammogram images with identical region layouts. The sequel of this

section discusses breast orientation detection in mammograms, ROI selection and ROI

characteristics analysis.

Breast orientation detection. Breast orientation is determined through the following

steps:

- breast contour detection: we use the approach described in (Feudjio et al., 2012). Note

that the main pattern for breast orientation detection is the breast shape. So, even us-

ing a rough segmentation technique such as thresholding the image with its mean value

enables to retrieve the breast shape.

- chest wall position estimation: the chest wall is in first approximation a straight line.

Its position is thus determined by applying a Radon transform to the breast contour

image. In figure 2, the chest wall corresponds to segment OB.

- breast orientation retrieval: if the chest wall edge is located in the first right half of

the image, the breast is oriented right otherwise it is oriented left.

Left-oriented breast mammograms are then vertically mirrored thereby allowing to pro-

cess images with identical region layouts.
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Figure 2. Mammogram with a right orientation and a pectoral muscle at the upper

left corner of the image. The coordinate axis are directed as shown with the origin at

top left. N1 and N2 are respectively the number of rows and columns in the image.

ROI is selected as a rectangular window of size OAxOC, where OA is half height of

the image and C is the upper endpoint of the breast contour.

ROI selection. As the pectoral muscle is roughly triangular, the ROI is therefore

selected as a rectangular region starting at the origin O. Its height is taken equal to

OA where A is the half height of the image. This allows to reduce the amount of dense

glandular tissue in the ROI in order to guarantee good segmentation results. On the

other hand, the ROI width should be large enough to fully contain the pectoral muscle.

A simple way to ensure this is to take the ROI width equal to OC where C is the

top endpoint of the breast border (see figure 2). Mammograms are now ready to be

processed for pectoral muscle segmentation.

2.2.2. Pectoral muscle segmentation. Ideally, the ROI should entirely contain the pec-

toral muscle while rejecting as much as possible other regions in order to ensure good

extraction results. However, in practice such an hypothesis is not always met since there

is a high variability in shape and size from one patient pectoral muscle to another. The

concavity of the breast border in the neighbourhood of point C (see figure 2) implies that

the ROI comprises a small part of the background. Therefore, the ROI selected mainly

consists of three regions: pectoral muscle, breast glandular tissue, and background.

The choice of the segmentation method applied in our approach is justified from an

analysis of characteristics of regions contained in the ROI. Figure 3(a) shows the ROI

extracted in a mammogram where the pectoral muscle has been delineated from breast
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(a) (b)

Figure 3. ROI extracted from a mammogram (mdb018). (a) ROI with pectoral

muscle, breast tissue and non breast tissue. Pectoral muscle boundary was traced out

manually. The lower portion of the ROI presents an overlap of pectoral muscle and

breast tissue. (b) Intensity histogram of the ROI. VB , VG and VP are modes of the

following regions background, breast tissue and pectoral muscle respectively.

tissue manually. In many MLO mammograms, the lower portion of the pectoral muscle

is spatially superimposed on some glandular tissue. The impact of the overlap between

glandular tissue and pectoral muscle can easily be observed on the ROI histogram (see

figure 3(b)). There is no clear cut separation between the modes of the histogram. Thus,

it is not always possible to find thresholds that can completely separate the pectoral

muscle from other tissues (Kwok et al., 2004). In such cases, FCM algorithm which is an

unsupervised classification method can be used to optimally cluster overlapping data.

The next subsections address the FCM algorithm and show how we modified it to take

into account spatial information.

Fuzzy C-Means algorithm. The FCM is an unsupervised data labelling algorithm

commonly used in image processing for segmentation tasks. This is an appropriate

method for clustering overlapping data. Let us denote the gray level intensity of the jth

pixel in the ROI by xj. For each image region in the ROI, one membership function

is defined with respect to xj. The value of the membership function µi,j depicts the

possibility for a pixel to belong to the ith region given its grey level intensity xj.

Membership functions are given by:

µi,j =

(
c∑

k=1

(
d(xj, vi)

d(xj, vk)

) 2
m−1

)−1

(1)

with m > 1 a parameter of fuzzification control and where vi is the mode of the ith

image region:

vi =

∑n
j=1 µ

m
i,jxj∑n

j=1 µ
m
i,j

. (2)
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The membership functions only depend on the gray value level and can thus be

superimposed with the ROI histrogram (see figure 4).

Figure 4. Membership functions of regions: background (- - - -), glandular tissue

(——) and pectoral muscle (— · —) superimposed on the ROI histogram of figure 3(b).

The FCM algorithm main principle consists in minimizing the inter-class distance

through an objective function Jm defined by:

Jm(µ, v) =
c∑

i=1

n∑
j=1

µm
i,jd

2(xj, vi) (3)

where n is the number of pixels in the ROI and c the number of image regions to

segment. d is the Euclidean distance from a pixel intensity xj to the region mode vi :

d(xj, vi) = ∥(xj − vi)∥. Moreover, we have the following constraint : ∀j,
∑c

i=1 µi,j = 1.

As can be observed from equations (1) and (2), one needs the region modes to

compute membership functions and conversely, therefore the FCM algorithm is an

iterative algorithm which starts by randomly initializing the modes and evaluating the

membership function. At each iteration, the membership function and the clusters center

are updated. An optimal partition of clusters is obtained when from one iteration to

another the euclidean distance between the previous and the current cluster center is

less than a convergence parameter noted ϵ. Segmentation of the image is then performed

by assigning each pixel to the region with the highest membership function value .

Two major weaknesses of the classical FCM algorithm are random initialization of

region modes which penalizes fast convergence of the algorithm and non-use of spatial

information leading to clustering two pixels of same gray level to the same region

no matter their spatial localization. Furthermore as the FCM algorithm is gradient

descendent, random initialization of cluster may lead the algorithm to converge towards

the local minimum.

Modified FCM. As explained in the previous subsections, the FCM algorithm often

misclassifies some pixels, we therefore introduce a modified FCM algorithm that allows

better pixel classification results. It has been shown that integrating local information
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when updating pixel membership functions significantly improves the segmentation

performances in MRI brain images (Wang and Wang, 2008). The neighborhood

information is integrated in the clustering process by computing a weighted version

of the membership function defined as followed:

µ̃i,j =
µm
i,jS

n
i,j∑c

k=1 µ
m
k,jS

n
k,j

(4)

where Si,j =
∑c

k∈N(xj)
µi,k is the spatial function computed in a squared window

N centered on the pixel j and m, n are weighting parameters. Consequently, the

membership functions are now not only depending on pixel gray level intensity but also

on neighboring pixels and they can no longer be superimposed on the ROI histogram.

Figure 5 shows the effects of integrating local information on segmentation.

Figure 5. Segmentation of the ROI into 3 regions: pectoral muscle, breast tissue and

background. On the left column the initial image, the two next columns are results of

segmentation using FCM algorithm without and with local information respectively.

One can see that some misclassified pixels in the ROI have been well classified

thanks to neighborhood information. This modified FCM algorithm can still be criticized

based on the following grounds: increased computation load and dependance on clusters

initialization. Similar conclusions are drawn in (Wang and Wang, 2008) and the FCM

algorithm needs further improvements to prevent from bad segmentation results.

It has been shown that neatly estimating region modes significantly reduces the number

of iterations while enhancing accuracy in the results. One appealing method of

estimating region modes is the block density approach (Guo et al., 2009). In the

latter, the image histogram hj is subdivided into c blocks Bi of equal size, one block

for each region involved in the segmentation. If the image has 256 gray levels, then

Bi =
{
(i− 1)× 256

c
, ..., i× 256

c
− 1
}
. A random variable X is defined to represent the

probability for a pixel to have xj as gray value level. The distribution of variable X

corresponds to gray level occurrence in the image, i.e. the histogram: P (X = xj) = hj.

The initial mode of the first region denoted by v
(0)
1 is computed as the highest probability

level belonging to the first block and its probability is denoted by hv1 . The subsequent

region modes v
(0)
2 , ..., v

(0)
c are then computed by finding the gray level of the block that

maximizes the following expression:

v0i = argmax
j∈Bi

hj ×D(xj, v
0
i−1) (5)
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with D(xj, v
0
i−1) the distance between two levels which is given by:

D(xj, v
0
i−1) =

(
(xj − v0i−1)

2 + (hj − hvi−1
)2
)1/2

(6)

The membership function are initialized at robust regions modes and then updated by

using local information. Here is a outline of the algorithm:

Algorithm 1 Modified FCM (mFCM)

Require: c = 3, m = 2, n = 3, ϵ = 0.01, nw=5x5

v(0) =
{
v
(0)
1 , ..., v

(0)
c

}
← Estimate region modes using sample block density with

equation (5)

for i from 1 to c do

µ
(k+1)
i,j ← Evaluate membership function with equation (1)

end for

while ∥v(k+1) − v(k)∥ > ϵ do

for i from 1 to c do

µ̃
(k+1)
i,j ← Update weighted membership function with equation (4)

end for

for i from 1 to c do

v
(k+1)
i ← Update regions mode with equation (2)

end for

k ← k + 1

end while

2.2.3. Post-processings for pectoral muscle contour refinement

Incorrect pectoral muscle region detection and correction. Once the mFCM algorithm

has converged, the segmentation is performed by assigning each pixel to a region where

its membership function is the highest. The pectoral region is then identified as the area

with highest gray level and located upper left corner of the image.

The mFCM segmentation results are satisfying in most cases but a post-processing

is needed to detect and correct wrongly segmented images. Figure 6 shows the

segmentation results in a rather difficult case. The slight variation of gray level intensities

along the pectoral muscle edge leads to an inaccurate contour estimation. In addition,

the strong overlapping between glandular tissues and pectoral muscle in its lower part

results in over-estimated pectoral muscle region. In this latter case, the contour of the

pectoral muscle deduced from the segmentation deviates inward-breast direction with a

concave curvature.

A validation process of the estimated pectoral region is carried out to detect and

remove the overestimated area. This is done by computing the angle of curvature to find

contour points with the highest deviation. The angle of curvature θj of the jth contour

point is computed as angle between the tangent line of preceding contour points and
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(a) (b) (c)

(d)

Figure 6. Pectoral muscle region validation: (a) Initial image, (b) Estimated pectoral

muscle region from segmentation, (c) Extracted contour with tangent lines (bold black

segments) at the deviation point of the contour and the final estimated contour with

the lower part fitted to straight line after the point of deviation, (d) Angle curvature

of the extracted contour. The peaks indicate the concavities due to contour deviation.

the tangent line of following contour points at each point of the contour (see figure 6).

The angle between these two tangent lines is given by the formula:

θj = tan−1

(
a1 − a2
1 + a1a2

)
(7)

where a1 and a2 are the respective slopes of the straight tangent lines.

It can be seen from figure 6 that the estimated pectoral muscle contour is very noisy

(quick variation of contour pixels’ position). Consequently it is necessary to compute the

tangent lines on a rather wide range of contour points to smooth the absolute value of

the angle of curvature curve. We obtained reliable information on contour for smoothed

angle curvature computed on 25 pixels (1cm) tangent lines.

Abnormal deviations in the contour are found in peak areas in the angle of curvature.

Conversely if there is no abnormal deviation in the contour, the angle of curvature will

remain quite flat. Figure 6(d) shows the angle of curvature after smoothing in the case
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where the pectoral region was overestimated due to glandular tissue overlapping. The

stronger the peak, the more likey it is to have a wrong contour deviation at that point.

Based on this observation, a threshold was established at 30◦ to detect contour areas

where an abnormal deviation occurs. When the angle of curvature is greater than this

threshold, the rest of the contour is extrapolated from the tangent straight line of points

preceding the deviation. This approximation allows to cope with the cases of pectoral

region overestimation especially where there is an overlap between pectoral muscle and

glandular tissue. In cases where the pectoral muscle is not entirely contained in the

ROI, the rest of its contour in the image is estimated by a straight line on the basis

that pectoral muscle is in first approximation triangular. In the subsequent steps, the

images are processed in their full height.

Now, the contour obtained from the estimated pectoral region roughly corresponds to the

true pectoral boundary but does not perfectly fit the actual pectoral muscle contour. To

improve the accuracy of the algorithm, a refinement of the extracted contour is carried

out. The next subsection explains the strategy carried out to refine the contour in order

to improve the accuracy of the pectoral muscle extraction. It is made of two sub-steps:

pectoral muscle boundary fitting and pectoral muscle contour smoothing.

(a) (b) (c)

Figure 7. Pectoral muscle contour refinement. (a) Validated contour with search

paths drawn every three contour points, (b) True pectoral edge points detected after

boundary fitting, (c) Final pectoral muscle contour obtained after smoothing the true

pectoral edge points.

Pectoral muscle boundary fitting. The pectoral muscle contour fitting approach

developed in this work is based on the idea introduced in (Kwok et al., 2004). This

approach relies on the definition of a search path for each point of the estimated

pectoral contour. A search path is defined as the orthogonal line segment centered

on its corresponding contour point. The search path slope is obtained straightforwardly
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from the previously computed angle curvature by adding 90◦. The length of the search

path denoted L was fixed at 15 pixels (6mm). At some points of contour, search paths

exceed the ROI. In these cases, they are rotated accordingly so that they lie within

the breast area (see figure 7(a)). Having obtained these paths, we make the following

reasonable assumption: the correct pectoral muscle contour point belongs to the search

path, one just has to find out which one it is. In (Kwok et al., 2004), the intensity

profile along the search path is modelled as a sigmoid function. The pectoral muscle

edge point is supposed to lie at the inflection point of the sigmoid. However, it is hard to

model the intensity profile to a sigmoid in the area where the pectoral muscle overlaps

with glandular tissue because there is not a sharp variation of the gray level intensity

within these areas. Consequently, the fitted contour may deviate from the true edge. A

refinement method based on local maximum average gradient search was introduced by

Chakraborty et al. (2012). This method is based on the fact that the gradient is known

to be higher at the edge of two regions. The average gradient AG is computed at each

point of the image along the x-axis as follows:

AG(xj) =
2

L− 1

∑
1≤k≤L−1

2

xj−k − xj+k

2k
(8)

Note that the formula above assumes that pixels are indexed from left to right, for each

image line.

Thanks to its smoothing aspect, the average gradient is robust to spike structures

observed in the gradient of a profile. It clearly depicts the location of edges with a

prominent peak even in boundary area with low pixels intensities variation and thus

make it easier to retrieve edge point.

The edge point of the pectoral muscle is the one whose average gradient value is maximal

among pixels in the search path. It was observed in some cases that shortening the

search path during boundary fitting as described in (Chakraborty et al., 2012; Kwok

et al., 2004) does not produce accurate contour and more iterations were needed to

obtain a good one. Therefore, instead of shortening the search path we used a fixed

length of the search path and perfomed iterations until a convergence of points of the

contour is obtained. The convergence is obtained when from one iteration to another

the Haussdorf distance between the previous contour and the current one is less than a

threshold (2 pixels or 0.8mm).

Pectoral muscle contour smoothing. After fitting the contour, a set of points detected

as true pectoral edge pixels are found. The contour points are smoothed within a moving

window to avoid the effect of noisy detected points. The smoothing is performed by a

locally weighted least square fitting method. For each data point in the moving window,

the regression weights are comptued with the following characteristics:

- the data points to be smoothed has the largest weight and the data outside of the

window have zero weight.

- a linear least square regression is computed using a first degree polynomial.
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The smoothed value is given by the weighted regression as a predictor value of interest.

After the smoothing process, it may happen that a row in the area of pectoral muscle

has more than one edge point or no edge point at all. If two contour points are detected

in a ROI row, then the pixel with the maximum gradient is chosen as pectoral edge

pixel.

For no edge pixel in a row, the pectoral pixel is estimated to lie at the same column as

the one in the previous row. The pectoral region is finally enclosed by an extrapolated

straight line if the smoothed contour does not reach the chest wall.

3. Results and performances evaluation

This section presents the results yielded by the proposed method on an open dataset of

images as well as discussion and comparison of results with those of related works.

3.1. Pectoral muscle extraction evaluation

Figure 8 shows some pectoral muscle extractions obtained with the proposed method. In

comparison with radiologist’s manually drawn pectoral muscle boundary, the following

results can be highlighted:

- The POA mean and the standard deviation are 86.42±13.23%.

- The FN mean and the standard deviation are are 11.12± 12.53%, while the FP mean

and the standard deviation are are 3.35± 8.72%.

- The Haussdorf distance mean and the standard deviation are 14.83±16.15 mm.

- 55.96% (155/277), 80.51% (223/277) and 89.89% (249/277) of the computed pectoral

muscle edges had a greater POA than 90%, 80% and 70% respectively.

- 27.80% (77/277) and 53.07% (147/277) of the computed boundaries had Hausdorff

distances within 5 mm and 10 mm from the reference boundaries respectively.

Identifying the pectoral muscle becomes difficult if dense tissue appears near the

pectoral muscle. Consequently, as explained in section 2.2.3, a strategy to cope with

contour deviation and refine the estimated contour is proposed to track down the true

pectoral muscle boundary. Evolution of performances thanks to boundary refinement

step based on overlap percentage is presented on figure 9. One can notice that the

accuracy of the proposed algorithm has been significantly improved through boundary

refinement. For instance, the rate of images with inaccurate (POA < 80%) estimation

of pectoral muscle drops from 41.16%(114/277) to 19.49%(54/277) while the one with

high accurate estimation (POA > 95%) raises from 0.36%(1/277) to 19.13%(53/277).

In addition, the Hausdorff distance drops from 23.32 ± 18.30 mm before refinement

process to 14.83±16.15 mm after refinement.

The inaccurate images obtained before boundary refinement were mainly those having

strong overlapping between pectoral muscle and glandular tissue or those showing some

artifacts or having non uniform gray level intensities in the pectoral muscle area. The

above results prove that the pectoral muscle contour fitting step improves the accuracy
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Some examples of pectoral muscle boundaries detected by the proposed

method and superimposed on the mammograms. (a) mdb029, (b) mdb111, (c) mdb113,

(d) mdb185, (e) mdb217, (f) mdb221, (g) mdb272, (h) mdb320 and (i) mdb191.

of the pectoral muscle extraction in those cases.

3.2. Observer variability for identifying pectoral muscle

Regarding the subset of 84 images used in (Ferrari et al., 2004), two hand-drawn pectoral

boundaries were available. In the first case, the pectoral boundaries coordinates from

a radiologist R2 were those used in Ferrari et al. (2004) and provided by Rangayyang
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Figure 9. Histogram showing the proportion of images with percent overlap area

between the computed and the reference standard pectoral muscle region before and

after boundary refinement.

Table 1. Effect of the variation of reference standard on the performances of the

algorithms.

R1vsR2 R1vsmFCM R1vsGabor R2vsmFCM R2vsGabor

POA Mean 95.58 89.12 81.98 87.95 84.27

(%) Std Dev 2.12 14.09 15.13 14.66 16.02

Hdist Mean 3.89 9.30 10.51 8.50 12.47

(mm) Std Dev 7.37 8.60 19.46 14.06 21.97

while in the second case, the pectoral boundaries correspond to that drawn by our

radiologist R1. These two reference standards were used to study the effect of the

reference standard variability on the performance evaluation. The same experiment

was carried out on both our results and those of Ferrari et al. (2004) as the outputs of

their algorithm were provided. Note that in one very particular image, the radiologist

R2 identified a very small region as pectoral muscle while the radiologist R1 did not

identified any. This is explained by the fact that the pectoral muscle region is composed

of a very few pixels and consequently radiologist R1 considered it unworthy to delineate.

This image was therefore discarded from the following study.

Table 1 shows the comparison between the hand drawn pectoral muscle boundaries

of radiologist R1 and R2, the computed boundaries of our method and the ones obtained

in (Ferrari et al., 2004). For the inter-observer variability evaluation, the results show

that the average and the standard deviation of POA and Hdist are 95.58 ± 2.12% and

3.89 ± 7.37 mm respectively. Furthermore, the results of the proposed method are the

closest to those obtained when two radiologists are compared. The Mc Nemar test was

used to assess the statistical significance of the performances of these two approaches.
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The images fulfilling the accuracy criterion (POA>90%) for both reference standard in

one method and do not in the other are 45 (54.22%) with mFCM and only 4 (4.82%) with

Gabor method. The Mc Nemar value is 34.31 which compared to χ2 indicates that the

mFCM improvement is statistically significant with a p-value less than 0.01. To evaluate

the significance in observer variability, images having POA>90% when compared to one

reference standard and less with the other are counted for each method. The Mc Nemar

values found are 1.14 and 24 for mFCM method and Gabor method with p-values less

than 0.25 and 0.01 respectively. This result shows that Gabor method is statistically

sensitive to the reference standard whereas the mFCM which has is p-value greater than

the threshold of 0.05 does not exhibit a significant sensitivity.

In figure 10, our approach and Ferrari et al. (2004) approach are further compared. The

cumulative percentages of images with performance metrics greater than a given value

for both methods compared to each radiologist reference standard are presented. For the

POA criterion, the proposed method performs better than the Gabor method for both

reference standard. However, for Hdist criterion, the performances of the two methods

are quite close with minor advantage to Gabor method.
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Figure 10. Cumulative percentages of images with performance metrics greater than a

given value. Percent overlap area (a), (c) and Hausdorff distance (b), (d) performances

of pectoral extraction using Gabor wavelets (Ferrari et al., 2004) and the mFCM

compared to two expert reference standards R1 and R2 respectively.
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Table 2. Comparison of reported studies using several performance metrics: mean and

standard deviation and the percentage of images with the conditions set in the reported

studies, where FP and FN rates are considered to be accurate (< 5%), acceptable (5%

to 10%) and unacceptable (> 10%). Unprovided data in the publications are marked

as NA.

Performance criterion Hough Gabor AP MST mFCM

FP (Mean ± Std Dev) 1.98± 6.09 0.58± 4.11 3.71 2.55 2.58± 6.43

FN (Mean ± Std Dev) 25.19± 19.14 5.77± 4.83 5.95 11.68 8.78± 13.95

FP < 5% and FN < 5% 10 45 50 40 38

min(FP, FN) < 5% and

5% ≤ max(FP, FN) ≤
10%

NA NA 18 20 24

min(FP, FN) < 5% and

max(FP, FN) > 10%

NA NA 11 18 18

5% < FP < 10% and

5% < FN < 10%

8 22 0 0 1

5% < min(FP, FN) <

10% and

max(FP, FN) > 10%

NA NA 0 1 1

FP > 10% and FN >

10%

66 17 5 3 1

∗Hough transform and Gabor filter were introduced by Ferrari et al. (2004), AP and MST were pre-

sented by Ma et al. (2007) and mFCM is the proposed method.

4. Discussion

4.1. Comparison study

For a coherent comparison, the performances of our algorithm were compared to those

applied on same dataset of the same database. The performance criteria were computed

on 83 images as we removed from the study all images identified by our radiologist

without any pectoral muscle component. Table 2 shows the comparison between the

performances of the proposed method and those of four reported methods performance

metrics provided in their publications: The mean and standard deviation of the FP and

FN rates in comparison to radiologist manually segmented pectoral muscle region. The

four related works used for comparison are based on Hough Transform and Gabor filter

(Ferrari et al., 2004), adaptive pyramids (AP) and minimum spanning trees (MST) (Ma

et al., 2007).

From table 2, one can notice that Gabor wavelets exhibits the lowest rates of FP and

FN. However, the proposed method perfoms as well as other methods presented in the

table. A robust measure of pectoral muscle the segmentation can be expressed by the
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counts of images for which both FP and FN are small (rows 4 and 5 of table 2). In

these cases, AP and the proposed method exhibit the best performances. The rate of

images for which both FP and FN are large (rows 8 and 9 of table 2) is smallest for

the proposed method. When satisfying performaces regarding the two latter criteria

are wanted, the proposed method is the best. This comparison tends to show that the

proposed method globally achieves better performances than the previous methods.

4.2. Difficult cases and limitations

The main difficulties to overcome when dealing with pectoral muscle extraction are:

- presence of artifacts (skin folded),

- non uniform texture of the pectoral muscle region,

- overlapping tissues in the lower part of the pectoral muscle region.

In addition, the size and the shape of the pectoral muscle are different from one patient

to another.

(a) (b) (c)

(d) (e) (f)

Figure 11. Some examples of pectoral muscle boundaries detected by the proposed

method (black) and hand-drawn by the radiologist (white) superimposed on the

mammograms. Cases with strong overlap of glandular tissue (a) mdb240, (b) mdb053,

(c) mdb054 and cases with skin folded or non uniform texture (d) mdb066, (e) mdb065,

(f) mdb034.
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Figure 11 presents the outputs of our approach on very difficult cases. In some cases

showing strong overlap with glandular tissue or non uniform contrast, the proposed

method gives quite good pectoral mucle extraction results (see figure 11(a-c)). This

is due to the fact that the proposed method takes advantage of contour validation to

better localize the pectoral muscle region as it upper edge in such cases is mostly well

estimated. The refinement of contour in these cases is effective only in the area where the

overlap is not very strong or where the contrast is acceptable. However, in presence of

severe artifacts like skin folded or poor contrast the algorithm fails to produce accurate

results (see figure 11(d-f)). The main cause of this failure lies in the segmentation step.

In these cases, the contour obtained after segmentation mainly follows the skin folded

shape. Moreover, during the refinement step, the edge points found are those located

on false edges since the latter show the nearest spike on the average gradient profile

towards which the refinement process converges.

Although some significant deviations between the computed boundary and the actual

one can be seen, the proposed solution is never completely incoherent. Note that these

limitations are mostly observed in particular cases of images where mammograms were

not performed under optimal conditions. Carelessness on patient’s positioning during

mammograms acquisition may result in blurred images with patterns like pectoral muscle

partially obstructed or not well depicted (see figure 11(d-e)). In addition, the difficult

cases represent less than 5% of processed images. The robustness of our approach is

thus satifying. Better results on such difficult cases could be achieved by designing an

additional post-processing or by imposing more stringent conditions into mammographic

examination protocols. In such cases, a semi-supervised segmentation approach, in

which some control points of pectoral muscle contour are defined by the operator, is

likely to cope with this difficulty. This is an attempt to formalize the experts knowledge

to segment these difficult cases thereby reducing the expert’s workload considerably.

This strategy will be investigated in further work.

5. Conclusion

Identification of pectoral muscle in MLO view of mammograms is a challenging task

due to various patterns that make its automatic segmentation complicated. The main

difficulties to overcome are the differences of shape, size and texture of the pectoral

muscle region from one image to another, the variations in image quality and the

overlapping between dense glandular tissue and pectoral muscle. In this work, we

introduced an automated approach of pectoral muscle extraction using some basic a

priori knowledge and gray level intensity information to delineate the pectoral boundary.

The boundary of the pectoral muscle is segmentated using a modified clustering

algorithm. Then a validation of the contour obtained from the segmentation is done

to cope with overestimation of pectoral muscle region occuring in its lower part when

its overlaps with dense glandular tissue. The final contour is obtained through iterative

boundary refinement using average gradient. The performance of the proposed method
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compared to a radiologist expert manual segmentation as reference shows that our

method produces good results as compared to related works tested on the same database.

The proposed method can be useful as a preprocessing step of applications dealing with

mammogram analyses like registration, tissues characterization, and breast deformation

modelling which are the key steps to build accurate CAD systems.
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Appendix A. Distribution of images selected from the MIAS database

Table A1. Filenames of images rejected.

Amount : 45 images

mdb002; mdb010; mdb017; mdb024; mdb029; mdb061; mdb098; mdb137; mdb138;

mdb146; mdb148; mdb151; mdb153; mdb154; mdb155; mdb158; mdb173; mdb179;

mdb216; mdb224; mdb225; mdb236; mdb241; mdb252; mdb253; mdb254; mdb262;

mdb269; mdb273; mdb283; mdb285; mdb287; mdb288; mdb289; mdb293; mdb295;

mdb301; mdb304; mdb305; mdb313; mdb314; mdb315; mdb317; mdb321; mdb322.
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Recognition and Image Analysis’ Vol. 3523 of Lecture Notes in Computer Science Springer-Verlag,

Berlin Heidelberg pp. 471–8.

Reddy M and Given-Wilson R 2006 Screening for breast cancer Women’s Health Medicine 3, 22–7.

Saha P K, Udupa J K, Conant E F, Chakraborty D P and Sullivan D 2001 Breast tissue density

quantification via digitized mammograms IEEE Trans. Med. Imaging 20, 792–803.

Suckling J, Dance D R, Moskovic E, Lewis D J and Blacker S G 1995 Segmentation of mammograms

using multiple linked self-organizing neural networks Med. Phys. 22, 145–52.

Suckling J, Parker J, Dance D R, Astley S, Hutt I, Boggis C R M, Ricketts I, Stamatakis E, Cerneaz

N, Kok S L, Taylor P, Betal D and Savage J 1994 The mammographic images analysis society:

Digital mammogram database Experta Medica International Congress Series 1069, 375–8.

Wang P and Wang H 2008 A modified FCM algorithm for MRI brain image segmentation in ‘Int.

Seminar on Future BioMedical Information Engineering’ pp. 26–29.



Automatic Extraction of Pectoral Muscle in MLO View of Mammograms 25

Table A3. Filenames of images selected for this study.

Amount: 277 images

mdb001; mdb003; mdb004; mdb005; mdb006; mdb007; mdb008; mdb009; mdb011;

mdb012; mdb013; mdb014; mdb015; mdb016; mdb018; mdb019; mdb020; mdb021;

mdb022; mdb023; mdb025; mdb026; mdb027; mdb028; mdb030; mdb031; mdb032;

mdb033; mdb034; mdb035; mdb036; mdb037; mdb038; mdb039; mdb040; mdb041;

mdb042; mdb043; mdb044; mdb045; mdb046; mdb047; mdb048; mdb049; mdb050;

mdb051; mdb052; mdb053; mdb054; mdb055; mdb056; mdb057; mdb058; mdb059;

mdb060; mdb062; mdb063; mdb064; mdb065; mdb066; mdb067; mdb068; mdb069;

mdb070; mdb071; mdb072; mdb073; mdb074; mdb075; mdb076; mdb077; mdb078;

mdb079; mdb080; mdb081; mdb082; mdb083; mdb084; mdb085; mdb086; mdb087;

mdb088; mdb089; mdb090; mdb091; mdb092; mdb093; mdb094; mdb095; mdb096;

mdb097; mdb099; mdb100; mdb101; mdb102; mdb103; mdb104; mdb105; mdb106;

mdb107; mdb108; mdb109; mdb110; mdb111; mdb112; mdb113; mdb114; mdb115;

mdb116; mdb117; mdb118; mdb119; mdb120; mdb121; mdb122; mdb123; mdb124;

mdb125; mdb126; mdb127; mdb128; mdb129; mdb130; mdb131; mdb132; mdb133;

mdb134; mdb135; mdb136; mdb139; mdb140; mdb141; mdb142; mdb143; mdb144;

mdb145; mdb147; mdb149; mdb150; mdb152; mdb156; mdb157; mdb159; mdb160;

mdb161; mdb162; mdb163; mdb164; mdb165; mdb166; mdb167; mdb168; mdb169;

mdb170; mdb171; mdb172; mdb174; mdb175; mdb176; mdb177; mdb178; mdb180;

mdb181; mdb182; mdb183; mdb184; mdb185; mdb186; mdb187; mdb188; mdb189;

mdb190; mdb191; mdb192; mdb193; mdb194; mdb195; mdb196; mdb197; mdb198;

mdb199; mdb200; mdb201; mdb202; mdb203; mdb204; mdb205; mdb206; mdb207;

mdb208; mdb209; mdb210; mdb211; mdb212; mdb213; mdb214; mdb215; mdb217;

mdb218; mdb219; mdb220; mdb221; mdb222; mdb223; mdb226; mdb227; mdb228;

mdb229; mdb230; mdb231; mdb232; mdb233; mdb234; mdb235; mdb237; mdb238;

mdb239; mdb240; mdb242; mdb243; mdb244; mdb245; mdb246; mdb247; mdb248;

mdb249; mdb250; mdb251; mdb255; mdb256; mdb257; mdb258; mdb259; mdb260;

mdb261; mdb263; mdb264; mdb265; mdb266; mdb267; mdb268; mdb270; mdb271;

mdb272; mdb274; mdb275; mdb276; mdb277; mdb278; mdb279; mdb280; mdb281;

mdb282; mdb284; mdb286; mdb290; mdb291; mdb292; mdb294; mdb296; mdb297;

mdb298; mdb299; mdb300; mdb302; mdb303; mdb306; mdb307; mdb308; mdb309;

mdb310; mdb311; mdb312; mdb316; mdb318; mdb319; mdb320.

Zhou C, Wei J, Chan H P, Paramagul C, Hadjiisaki L M, Sahiner B and Douglas J A 2010 Computerized

image analysis: Texture-field orientation method for pectoral muscle identification on MLO-view

mammograms Med. Phys. 37, 2289–99.


