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Abstract 

The establishment of an MRI-only workflow in radiotherapy depends on the ability to generate an 

accurate synthetic-CT (sCT) for dose calculation. Previously proposed methods have used a Generative 

Adversarial Network (GAN) for fast sCT generation in order to simplify the clinical workflow and 

reduces uncertainties. In the current paper we use a conditional Generative Adversarial Network 

(cGAN) framework called pix2pixHD to create a robust model prone to multicenter data. 

This study included T2-weighted MR and CT images of 19 patients in treatment position from 3 

different sites. The cGAN was trained on 2D transverse slices of 11 patients from 2 different sites. Once 

trained, the network was used to generate sCT images of 8 patients coming from a third site. The Mean 

Absolute Errors (MAE) for each patient were evaluated between real and synthetic CTs. A 

radiotherapy plan was optimized on the sCT series and re-calculated on CTs to assess the dose 

distribution in terms of voxel-wise dose difference and Dose Volume Histograms (DVH) analysis. 

It takes on average of 7.5 𝑠 to generate a complete sCT (88 slices) for a patient on our GPU. The 

average MAE in HU between the sCT and actual patient CT (within the body contour) is 48.5 ± 6 𝐻𝑈 

with our method. The maximum dose difference to the target is 1.3%.  

This study demonstrates that an sCT can be generated in a multicentric context, with fewer pre-

processing steps while being fast and accurate. 

 
 

1 Introduction 

Interest has been rapidly growing in complementing and even replacing Computed Tomography 
(CT) with Magnetic Resonance Imaging (MRI) in the field of radiation therapy thanks to a superior soft-
tissue contrast. In addition, an MRI-only workflow avoids extra radiation to the patient and reduces 
errors related to inter-modality registration. Currently, the main challenge is that MRI pixel values are 
not directly related to electron density, which is needed in radiation therapy treatment planning systems 
(TPS) for dose calculation. 

This problem is solved by converting an MRI to a so-called synthetic CT (sCT) or pseudo CT. Many 
different sCT generation methods have been proposed in the literature. These techniques recently 
underwent significant changes with the emergence of deep learning. Accuracy and velocity have 
dramatically increased (Han 2017, Dinkla et al 2018). Generative Adversarial Networks (GAN) have 
boosted this trend with their ability to learn generating any data distribution in a paired (Nie et al 2017, 
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Maspero et al 2018) or unpaired fashion (Wolterink et al 2017). So far, to the best of our knowledge no 
deep learning-based method described in the scientific literature, has included data from different 
medical imaging centers using different CT and MRI.  

In this paper, we discuss a new multi-scale approach by using an existing conditional GAN (cGAN) 
(Wang et al 2018) with paired data coming from different sites. A proof of concept study is conducted by 
creating a test set with images coming from a site not used in the train set. This will allow to cover a wide 
range of possibilities (artifact, anatomical malformation, MRI intensity variability) in the training and 
thus improve the generalizability of MRI to CT conversion. Finally, a dosimetric evaluation is performed 
to assess the dose accuracy on the sCT. 

2 Materials and methods 

2.1 Patients data collection 

This study included pelvic MR and CT images of 19 male patients with prostate or rectal cancer. 

Images were taken from the public dataset named the Gold Atlas project (Nyholm et al 2018) aimed to 

provide a source of training and validation for segmentation as well as sCT generation methods. 

Patients with locally advanced tumors were not included in this database. Radiotherapy planning for 

prostate cancer was carried out for all patients. Indeed, these were early stage rectal cancers that did 

not deform the pelvic anatomy and allowed realistic planning of prostate cancer radiotherapy. 

Nineteen patients coming from three sites were selected and scanned in radiotherapy treatment 

position, T2-weigthed MR and CT images were acquired following clinical protocol. Table 1 provides the 

acquisition settings. 

 
Table 1: Acquisition settings for the three sites. TSE stands for Turbo spin echo and FRFSE for Fast 
recovery fast spin‐echo, COL for columns. 

 Site 1 Site 2 Site 3 

Number of patients 8 7 4 

CT    

     Manufacturer Siemens Toshiba Siemens 

     Model Somatom Definition 
AS+ 

Aquilion Emotion 6 

     Slice thickness (mm) 3 2 2.5 

     Kernel B30f FC17 B41s 

T2-w     

     Manufacturer GE Siemens GE 

     Model Discovery 750w 3T  - 1.5T Signa PET/MR 3T 

     Sequence type FRFSE TSE FRFSE 

     Slice thickness (mm) 2.5 2.5 2.5 

     Bandwidth (Hz/pixel) 390 200 390 

     Encoding direction COL ROW COL 

     TR (ms) 6000–6600 12000–16000 6000–10000 

     TE (ms) 97 91–102 65 

 

9 organs were segmented by five experts based on MRI, and consensus contours among the 

experts are also available. The open source library ITK was used to perform a deformable registration on 
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the CT to fit the anatomy of the MRI, enabling the use of the delineations on the registered CT.  

 

2.2 Image pre-processing 

A mask excluding surrounding air was obtained on the CT and MRI using the external ROI option 

(threshold level based) on Raystation (v7.0). Voxels outside the body were automatically assigned to 

−1024 𝐻𝑈 for CT and 0 for MR. Inter-scan differences (air pockets and structures) have not been taken 

into account in this study. HU were normalized, MR intensities as well patient-wise. Finally, all dicom 

files were converted to 16-bit grayscale images compatible with current deep learning frameworks. The 

first and last slices were not taken into account for the training due to aliasing in MRI. This allowed the 

use of this dataset consisting of aligned MR-CT as part of an image-to-image translation problem. 

 

2.3 Network 

2.3.1 cGAN baseline 

GANs are characterized by two networks: the generator 𝐺(𝑧) with 𝑧 a noise vector and a 

discriminator 𝐷(𝑦).  For the current application, 𝑦 represents a CT image. All CT images are distributed 

according to an unknown probability distribution 𝑝𝑦. 𝐺 attempts to transform the vector 𝑧 into images 

so that a sample of size 𝑛, {𝐺(𝑧(1)), … , 𝐺(𝑧(𝑛))} follows the probability distribution 𝑝𝑦. 𝐷 attempts to 

separate the images actually distributed according to 𝑝𝑦  from those produced by his opponent 

𝐺. Actually, 𝐷(𝑥) is understood as the probability that image 𝑥 is a true CT. 

  To convert an MRI into a CT, the networks have to be conditioned with an MR image 𝑥. A simple 

way to achieve this objective is to feed these two networks with 𝑥 (as additional input). The generator 

and the discriminator therefore become 𝐺(𝑥, 𝑧)  and 𝐷(𝑥, 𝑦) respectively (Figure 1). As the training 

progresses, 𝐺 must be able to generate samples that are more and more faithful to the distribution 𝑝𝑦, 

making it more and more difficult for 𝐷 to detect fakes CT images. 𝐺 and 𝐷 are trained alternately and 

share the same objective function. The discriminator tries to maximize it while the generator tries to 

minimize it.  The objective function 𝐿𝑐𝐺𝐴𝑁  is the following expected cross-entropy: 

 

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼𝑥,𝑦[log 𝐷(𝑥, 𝑦)] + 𝔼𝑥,𝑧 [log (1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))]. (1) 

 
This network is optimized following the standard approach of Goodfellow et al. (Goodfellow et 

al 2014) by alternating the gradient ascent/descent steps between the generator and the discriminator. 

𝑧 is induced by dropout (Hinton et al 2012) in both the training and test phases. 

 

 
 

Figure 1: The discriminator D learns to classify a real CT from a synthetic CT while the generator G 
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learns to fool D following a min-max game. 

 

2.3.2 The pix2pixHD network 

The cGAN introduced by Wang et al. (2018) used in this work improves photorealism and resolution  

on four important aspects. 

 

• Coarse-to-fine generator: the generator which has an encoder-decoder architecture is separated 

in two sub-networks 𝐺 = {𝐺𝑔𝑙𝑜𝑏𝑎𝑙 , 𝐺𝑙𝑜𝑐𝑎𝑙}. The first one is the center of an encoder-decoder 

architecture and is thus itself a (smaller) encoder-decoder. It is pre-trained on low resolution 

images. The local generator (the entire encoder-decoder structure) is then fine-tuned on high 

resolution images. 

• Multi-scale discriminators:  𝐺 has to fight against several discriminators 𝐷 = {𝐷1, 𝐷2, 𝐷3 }. Each 
of these discriminators works at a different image scale.  

• A feature matching loss 𝐿𝐹𝑀 (Wang et al 2018) is added in order to stabilize the training of the 

generator by matching intermediate representations (feature maps) in the different layers of the 

discriminators from real and synthesized images. The idea behind this additional loss term is 

that the generator will be forced to produce images with more natural statistics at different 

scales. If we denote 𝐷𝑘
(𝑖)

the 𝑖-th layers of 𝐷𝑘, 𝐿𝐹𝑀
1  𝑖𝑠 𝑡ℎ𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑠: 

𝐿𝐹𝑀(𝐺, 𝐷𝑘) =  ∑ 𝑀𝐴𝐸(𝐷𝑘
(𝑖)(𝑥, 𝑦),

𝑁

𝑖=1

𝐷𝑘
(𝑖)(𝑥, 𝐺(𝑥, 𝑧))), (𝟐) 

where N is the total number of layers.  

 

• Instead of the usual cross-entropy cGAN loss, the authors recommend the Least Square GAN 

(LSGAN) loss (Mao et al 2017), a quadratic version. This loss address the problem of vanishing 

gradient when updating the generator (Arjovsky et al 2017) for sample lying on the “True” 

decision boundary but still far from the real data distribution. LSGAN loss penalises these 

samples enabling faster convergence and more realistic image generation.  

 
In our sCT generation implementation, pre-training the smaller resolution generator ( 𝐺𝑙𝑜𝑐𝑎𝑙) 

proved to be counterproductive and led to poorer results. The generator 𝐺 used here follows the 
architecture proposed by Johnson et al (2016) and learns to synthesize a CT. We chose to work with 𝐾 =
 2 discriminators working at different scales, both of them being trained to differentiate real and 
synthesized CT images. The first discriminator 𝐷1 operates at standard scale while the second 
𝐷2 operates with downsampled images by a factor 2. These discriminators have identical architectures 
with different receptive fields. They follow the PatchGAN architecture (Isola et al 2016) forcing the 
generator to produce consistent images while encouraging finer details. Training this model tends to 
produce realistic CT images but regarding HU, performances do not seem as good as they visually do. 
To overcome this difficulty without adding a post-processing step, we propose to add an additional 𝐿1 
reconstruction loss (MAE) term between the generated sCT and the true CT. The full objective function 
is then calculated as:  

 

min
𝐷

∑ 𝔼𝑥,𝑦[𝐷𝑘(𝑥, 𝑦) − 1]2 +

𝑘=1,2

𝔼𝑥,𝑧[𝐷𝑘(𝑥, 𝐺(𝑥, 𝑧))]
2

, 

 

1 Note that for 𝑦, �̂� ∈ ℝ𝑛, 𝑀𝐴𝐸(𝑦, �̂�)  =
1

𝑛
∑ |𝑦 − �̂�|𝑛

𝑖=1 . 
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𝑚𝑖𝑛
𝐺

𝔼𝑥,𝑦,𝑧  [𝜆. 𝑀𝐴𝐸(𝑦, 𝐺(𝑥, 𝑧))] + ∑ [𝐷𝑘(𝑥, 𝐺(𝑥, 𝑧)) − 1]2

𝑘=1,2

+
𝜇

𝐾
. 𝐿𝐹𝑀(𝐺, 𝐷𝑘), 

 
 

 
with  𝜆 = 10  and 𝜇 = 5 are two hand-tuned hyperparameters.  

 

2.3.3 Training of the network 

  The 19 patients were separated into a training set containing 7 patients from site 2 and 4 patients 

from the third one. The 8 patients coming from the site 1 were used as testing set. The network was 

trained using Adam optimizer with an initial learning rate of 0.0002 for 100 epochs, then for another 

100 epochs with a linearly decay learning rate to zero. 

Training took on average 17 hours on an Nvidia Quadro P6000 with a batchsize of 1. Data 

augmentation was performed by horizontal flip increasing the size of the training set to 2008 image 

pairs. 

 

2.4  sCT evaluation 

 

Once the network was trained, each sCT was generated using only the generator on the GPU. The 

images files created are then converted to a DICOM format, allowing their use on a treatment planning 

system. 

 

2.4.1 Image comparison 

Synthetic CT and registered CT were compared on a voxel-wise basis using the 𝑀𝐴𝐸 and the 

Mean Error2 (𝑀𝐸). Considering the voxels within the body contours, 𝑀𝐴𝐸 and in 𝐻𝑈 were calculated for 

each patient. 

A 16-bit implementation of a vanilla pix2pix (Isola et al 2016, Maspero et al 2018) was trained 

in the same multicentric configuration. 𝑀𝐴𝐸 and 𝑀𝐸 of the sCT generated by pix2pix is also calculated 

for each patient.  

 

2.4.2 Dose comparison 

Tomotherapy treatment plans were optimized on each sCT in Raystation (v7.0) using the Collapsed 

Cone (v3.5) algorithm on a grid of  1 × 1 × 1 𝑚𝑚3. The prescription was 39 ×  2 𝐺𝑦 to the planning target 

volume (PTV) (prostate with 5 𝑚𝑚 uniform margin). The resulting plans were then recalculated on the 

CT for dose comparison. 

A dose volume histogram (DVH) analysis was performed after copying the structures (PTV, femoral 

heads, bladder wall and rectum wall) to CT. The chosen DVH points were 𝐷98, 𝐷50 and 𝐷2. Voxel-wise 

absolute dose differences in percentage were computed within a dose threshold of 90%, 50% and 10% of 

the prescribed dose 𝐷𝑝. 

 

3 Results 

3.1 Image comparison 

 

CT synthesis took on average 7.5 𝑠 on GPU. Figure 2 shows an example of one of our test patients. 

 

2 Note that for 𝑦, �̂� ∈ ℝ𝑛, 𝑀𝐸(𝑦, �̂�)  =
1

𝑛
∑ 𝑦 − �̂�𝑛

𝑖=1 . 

(3) 
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As expected, differences are most pronounced in the bone structures. Staircase patterns are visible on 

the bone in the frontal view. This may be due to the 2D generation technique used that does not take into 

account adjacent slices. 

The proposed method produced an average 𝑀𝐴𝐸 of 48.5 ± 6 H𝑈 and an average ME of −18.3 ±  H𝑈 

for our 8 patients. Vanilla pix2pix produced an average 𝑀𝐴𝐸 of 62.0 ± 12 H𝑈 and an average ME of 

−11.4 ± 19 H𝑈. Table 2 provides the average 𝑀𝐴𝐸 and 𝑀𝐸 for target volumes and organs at risk (OAR) 

for pix2pixHD and pix2pix. 

 

 

Table 2 : Average MAE and ME in HU (±𝜎) between sCT and real CT for different locations when 
training with pix2pixHD based model and pix2pix. 

 MAE ME 

pix2pixHD pix2pix pix2pixHD pix2pix 

Bladder wall 49.4 ± 12 61.6 ± 10 -23.9 ± 23 -0.6 ± 31 

Rectum wall 101.8 ± 78 109.8 ± 78 -77.6 ± 90 -85.2 ± 80 

Anal canal 30.3 ± 14 36.0 ± 13 -24.6 ± 18 -26.4 ± 16 

Penile bulb 28.1 ± 9 56.5 ± 16 -19.2 ± 15 38.6 ± 25 

Femoral Heads 90.5 ± 9 112.7 ± 23 -25.9 ± 47 45.7 ± 44 

Seminal Vesicles 44.7 ± 15 54.8 ± 11 -14.0 ± 26 13.1 ± 19 

Prostate 47.1 ± 6 62.3 ± 9 -11.6 ± 12 17.5 ± 29 

 

 

 

 
 

Figure 2: From left to right, MR image, CT, sCT and difference (CT – sCT). The images on top represent 

the axial plane, on the bottom, the frontal plane. 

 

3.2 DVH analysis 

 
The absolute difference between the DVH points on sCT and CT were always below 1.4 %. Figure 

3 shows a boxplot of the DVH point difference for the PTV and the OARs. 
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Figure 3: DVH parameter differences between dose on CT and sCT for the PTV and OARs. 

3.3 Dose difference  

 
Mean absolute dose differences were computed with several dose thresholds. Differences only 

appear in high dose regions and the body contour as shown on Figure 4. The sCTs tend to have higher 

Hounsfield units (HU) resulting a global decreased dose inside the body. Inner negative dose differences 

are often due to lower HU on the sCT in bone area or air pocket not generated in sCT. 
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Figure 4 : From left to right, dose calculated on CT, sCT and dose difference (𝐶𝑇 –  𝑠𝐶𝑇).  

 

Table 3 reports the statistics in terms of mean dose difference related to the prescribed dose 

calculated on a threshold of 10%, 50% and 90% of the prescribed dose. 

 

Table 3: Mean dose difference (±𝜎) between CT and sCT and range of values. 

 

Volume |𝐷𝐶𝑇 −  𝐷𝑠𝐶𝑇|

𝐷𝑃𝑟𝑒𝑠𝑐
 (%) 

Body 

 

 

Dose > 10% 

 

 

Dose > 50% 

 

 

Dose > 90% 

0.00 ± 0.01 

[0.01 ; 0.03] 

 

0.12 ± 0.07 

[0.00 ; 0.22] 

 

0.49 ± 0.29 

[0.03 ; 0.92] 

 

0.68 ± 0.35 

[0.19 ; 1.23] 

 

4 Discussion and Conclusion 

 

Maspero et al. (2018) showed that conditional GANs can synthetize CT from MRI. In the current 

work, a good performance is achieved with a limited dataset with a coarse-to-fine approach, by 

incorporating a feature matching loss and the use of the Least Square GAN loss.  

This paper shows for the first time a robust neural network trained and tested with data coming 

from different medical imaging centers. Without ever having seen an image from the test site, our model 

learns to synthetize a clinically acceptable sCT, which may be generalized to different MRI 

manufacturers. This process has the capability to tackle the images variability problem in clinical 

practices, since changes can happen in image acquisition parameters or with machine replacement for 

instance. This study was done using standard morphological sequence (T2-w Spin Echo) without the 

need of any dedicated sequences. 

 Results look promising although a presence of artifact patterns can be noted. This may be partially 

due to the low amount of data and to the transposed convolutions used in the decoder part in the 

generator. The use of a third discriminator seems to get rid of this problem without improving 

quantitative results. The average MAE (48.5 𝐻𝑈) and the dosimetric evaluation (dose differences within 

1.4%) obtained in this study compare similarly with other state-of-the-art single center results (Nie et al 

2017, Maspero et al 2018) in the literature for the pelvic area. These small differences would be suitable 
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for clinical implementation. It is a well-known fact that deep learning models can benefit from more 

training data, which leads to the expectation that better results will be obtained when feeding our 

algorithm with more datasets. A direct comparison with other studies is sensitive and complex since 

distinct datasets are used. The size of the dataset, the sequence(s) used, the diversity (artifact, specific 

case, etc.)  and the misalignment between the sCT and the CT are some of the numerous factors that 

make a direct comparison difficult. 

Improvements need to be introduced in order to mitigate the discontinuity across the slices and 

therefore improve image quality. The use of 3D convolution leads to questionable results in the 

community, since they are greedy and not so effective. As a future perspective, we plan to improve sCT 

generation via Recurrent Neural Contextual Learning. Such models are expensive, and their benefits will 

have to be balanced with their increased complexity.  

A multi-center study based on the conversion of MR intensities to HU includes uncertainties related 

to the different image value to density table (IVDT). Direct conversion to electron density would avoid 

these errors but the benefit remains to be studied.  
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