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Abstract

In visual tracking, sources of information are often disrupted and deliver imprecise or unreliable data
leading to major data fusion issues. In the Dempster-Shafer framework, such issues can be addressed by
attempting to design robust combination rules. Instead of introducing another rule, we propose to use
existing ones as part of a hierarchical and conditional combination scheme. The sources are represented by
mass functions which are analyzed and labelled regarding unreliability and imprecision. This conditional
step divides the problem into specific sub-problems. In each of these sub-problems, the number of constraints
is reduced and an appropriate rule is selected and applied. Two functions are thus obtained and analyzed,
allowing another rule to be chosen for a second (and final) fusion level. This approach provides a fast and
robust way to combine disrupted sources using contextual information brought by a particle filter. Our
experiments demonstrate its efficiency on several visual tracking situations.
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1. Introduction

Visual Tracking (VT) consists in locating one or more objects throughout a video using visual information
processing. Existing approaches can be improved in two main ways: by designing more precise models using
machine learning techniques and/or by introducing a data fusion step that makes the observation/model
matching more robust. In this article, we follow the latter path. VT raises a challenging data fusion problem
as sources involved in the process can, from time to time, be highly imprecise or unreliable.
In terms of data fusion, the Dempster-Shafer theory (DST) [33] has gained popularity because it can process
data that are not only uncertain but also imprecise. Using this framework, one usually aggregates different
sources of information using a combination rule. The fusion process underlying a combination rule is
regulated by properties. VT specific fusion requirements are mainly related to imprecision and unreliability.
These requirements can be expressed in terms of combination rule properties. A rule possessing all the
required properties can thus be expected to lead to better VT performances.
Unfortunately, this constraint satisfaction problem appears to have no ideal solution. Some rules can adapt
their behaviours to either highly imprecise sources [44, 21] or to unreliability [3, 11] but the conjunction of
these two kinds of sources is much more difficult to deal with. To overcome this difficulty, broader fusion
schemes can be designed. In [39], Smets addresses conflict management using a conditional scheme that
makes use of particular rules depending on assumption rejections or validations. Ha-Duong [12] presented a
hierarchical scheme for the fusion of expert groups’ opinions. Denoeux’s cautious rule [6] is used for fusion
within each group and the outputs are then fused using the disjunctive rule. Quost et al. [29, 30] also
introduced a similar two-level fusion scheme for classifier combination. Sources are clustered according to
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their pairwise dependencies. A within-cluster rule is then designed and a second between-cluster rule is
applied to the outputs of the first one.
In this article, a hierarchical and conditional combination scheme (HCCS) is presented so as to address a
VT-related fusion challenge: highly imprecise and unreliable source combination. First, a source analysis
step identifies highly imprecise sources and unreliable sources, yielding groups of sources. Within each group,
the fusion problem is less constrained and is solved using a single rule. Our approach is also hierarchical
because a second fusion level is needed to aggregate the outputs of each group. These outputs are analysed
as well, allowing a final rule selection whose application yields the fusion result.
The first section of this paper presents general facts about belief functions. The second section reviews
combination rules and their properties, and discusses the interest of more refined fusion schemes. The third
section focuses on the analysis of the VT problem and its implications on the HCCS proposed. The scheme is
then presented in detail. Finally, the contribution of the scheme is demonstrated in the fourth part through
a VT algorithm: evidential particle filtering. The experiments show that our method outperforms classical
combination rules, and allows for more robust multiple-source object tracking.

2. Dempster-Shafer Theory: fundamental concepts

DST provides a formal framework for dealing with both imprecise and uncertain data. The finite set of
mutually exclusive solutions is denoted by Ω = {ω1, ..., ωK} and is called the frame of discernment. The set
of all subsets of Ω is denoted by 2Ω. A source S collects pieces of evidence leading to the assignment of belief
masses to some elements of 2Ω. The mass of belief assigned to A by S is denoted m [S] (A). For the sake
of simplicity, the notation m [S1] is replaced by m1 hereafter. The function m : 2Ω → [0, 1] is called basic

belief assignment (bba) and is such that
∑

A⊆Ωm (A) = 1. The set of all bbas is denoted B
Ω. A set A

such that m (A) > 0 is called a focal element. Two elements of 2Ω represents hypotheses with noteworthy
interpretations:

• ∅: the solution of the problem may not lie within Ω.

• Ω: the problem’s solution lies in Ω but is undetermined.

The open-world assumption states that m (∅) > 0 is possible. The closed-world assumption bans ∅ from any
belief assignments. Under the closed-world assumption, the standard way of combining distinct1 pieces of
evidence m1 and m2 is Dempster’s combination rule ⊕:

∀A 6= ∅,m⊕ (A) =
1

1− κ

∑

B,C|B∩C=A

m1 (B)m2 (C) , (1)

with κ =
∑

B,C|B∩C=∅

m1 (B)m2 (C) . (2)

The mass κ is also called the degree of conflict. The open-world counterpart of Dempster’s rule is the
conjunctive rule ∩©. The rule equation is the same as Dempster’s without normalization factor andm ∩© (∅) =
κ (see Table 1).
A bba is denoted Aw if it has two focal elements: A 6= Ω and Ω, and if:

Aw (A) = 1− w and Aw (Ω) = w. (3)

Such bbas are called simple bbas (sbbas). By extension of this notation, the bba denoted Ω0 stands for
total ignorance (Ω0(Ω) = 1); it is called the vacuous bba. The one for total conflict is ∅0. A bba such that
m (Ω) = 0 is said to be dogmatic. It is said to be normalized if m (∅) = 0.

1Pieces of evidence are distinct if the construction of beliefs according to one piece of evidence does not restrict the
construction of beliefs using another piece of evidence.
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There are other ways of representing beliefs, including the belief bel, implicability b, plausibility pl and
commonality q functions. In view of some further developments in this article, a brief presentation of
the conjunctive weight function w is also needed. Smets [37] has shown that a non-dogmatic bba can be
decomposed into a conjunctive combination of generalized simple bbas (gsbbas). A gsbba µ : 2Ω −→ R is
a sbba whose focal element A ⊂ Ω is assigned 1 − w with w ∈ [0,+∞). Depending on the value of w, two
cases can be distinguished:

• if w ≤ 1 : these gsbbas are sbbas.

• if w > 1 : these gsbbas are not bbas and are called inverse sbbas (isbbas).

An isbba with focal element A is interpreted as a representation of the belief that there exists some reason not

to believe in A. In other words, it constitutes a ”debt” of belief, hence the notation A1/w for an isbba. Smets
shows that any non-dogmatic bba m can be expressed as a conjunctive combination: m = ∩©A⊂ΩA

w(A)

with w : 2Ω −→ [0,+∞) a function such that:

∀A ⊂ Ω, w (A) =
∏

B⊇A





∑

C⊇B

m (C)





−1|B|−|A|+1

. (4)

The function w can be obtained fromm and conversely. Detailed definitions of belief representation functions
can be found in [6]. Besides, if a source S of information is known to be unreliable, then it is possible to
reduce its impact using an operation called discounting [33]. Discounting with discount rate α ∈ [0, 1] is
defined as:

m [α, S] (X) =

{

(1− α)m [S] (X) if X 6= Ω,
(1− α)m [S] (X) + α if X = Ω.

(5)

The higher α is, the stronger the discounting. Thanks to discounting, an unreliable source’s bba is trans-
formed into a function closer to the vacuous bba. Mercier et al. [23] presented a refined discounting, in which
discount rates are computed for each subset and each source. The discounting is consequently more precise
and efficient. It is, however, necessary to have enough information allowing subset-specific computation.
Partial ordering relationships can be defined on B

Ω according to bba information content. Two examples
of partial orderings are:

• pl-ordering: m1 ⊑pl m2 iff pl1 (A) ≤ pl2 (A), for all A ⊆ Ω;

• q-ordering: m1 ⊑q m2 iff q1 (A) ≤ q2 (A), for all A ⊆ Ω.

If m1 ⊑x m2, then m1 is said to be x-more committed than m2, meaning that m1 is more informative than
m2 in solving the problem. Formal definitions of other partial orderings as well as their dependencies can
be found in [6].

3. Information fusion in DST

This section is a short review of information fusion techniques in DST. Several combination rules, their
properties and more complex fusion schemes are presented.

3.1. Combination rules

For rules without pre-defined symbols, the notation ⊙xx refers to the combination rule named xx, and
mxx is understood as the bba resulting from the combination using ⊙xx. Combination rule equations are
gathered in Table 1.
Both Dempster’s rule and the conjunctive rule transfer beliefs to intersections of subsets. In contrast,
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the disjunctive rule, introduced by Dubois and Prade [8] and denoted ∪©, transfers beliefs to unions of
subsets. This rule is based on a different assumption on the reliability of sources2. Concerning this aspect,
the conjunctive and disjunctive combinations are two extreme cases, and consequently some authors have
proposed rules in between these two cases. Dubois and Prade [9] introduced another rule, denoted DPR,
that combines sources conjunctively but reallocates κ disjunctively.
Smets [38] generalized conjunctive and disjunctive rules by introducing the family of α-junction rules. The
coefficient α ∈ [0, 1] can be seen as a degree of conjunction or disjunction. The exclusive disjunctive rule,
denoted ∪© , belongs to this family of rules and transfers beliefs using the symmetric difference of subsets.
The interest of this rule is mainly theoretical because it can be interpreted as a solution to a specific data
fusion problem (see Section 3.2.2).
More recently, Florea et al. [11] introduced robust combination rules (RCRs). These rules average the
conjunctive and disjunctive rules using conflict-dependent weights. In the rest of the paper, RCR refers to
the robust rule with the weight functions recommended by the authors (see Table 1). This family of rules
was extended by Martin et al. [21] resulting in the so-called mix rules. In this extension, the weights are
functions of pairs of subsets and do not depend mandatorily on κ. In the rest of the paper, Martin’s mix
rule (MMR) refers to the mix rule with the weight functions recommended by the authors (see Table 1).
Note that MMR weights take subset cardinalities into account. The larger a cardinality, the more imprecise
the hypothesis. Consequently, imprecision influences the result of MMR computation. Using cardinalities
for weighting belief transfers was first suggested by Zhang [44] and applied to Dempster’s rule. However,
Zhang’s rule (ZR) output bba must be renormalized after combination.
Many authors have tried to work on Dempster’s rule basis by reallocating κ in different manners. Yager’s
rule (YR) [42] transfers it directly to the ignorance. Inagaki [13] designed a family of rules dealing with
conflict reallocation. This family was extended by Lefevre et al. [19]. The main idea behind these rules is
to distribute κ to some subsets according to an appropriate scheme.
Using non-linear functions, Dezert and Smarandache’s PCR5 [35] redistributes conflict to the subsets from
which it was generated. Martin et al. [36] generalized it for more than two sources. This generalization is
known as PCR6. The same authors [21] also integrated a discounting mechanism in PCR6 resulting in the
so-called discounted PCR (DPCR). They further proposed to combine the DPCR and the mix rule into the
mix DPCR (MDPCR).

Delmotte et al. [3] investigated the integration of reliability coefficients {Ri}
M
i=1 in two combination rules.

The first rule, referred to as Delmotte’s averaging rule (DAR), averages input bbas using {Ri}
M
i=1 as weights.

Note that averaging was also proposed by Murphy [25] and Jøsang [31]. The second rule, referred to as

Delmotte’s mix rule (DMR), is a mix rule with weight functions depending on {Ri}
M
i=1 (see [4] for a detailed

definition of these functions).
Another family of rules was recently introduced by Denoeux [6]. Only the two most significant ones are
examined in this paper: the cautious rule ∧© and the bold rule ∨©. They are based, respectively, on a
conjunctive combination of conjunctive weight functions w and a disjunctive combination of disjunctive
weight functions v3. Note that ∧© can only be applied to non-dogmatic bbas and, similarly, ∨© can only
be applied to non-normalized bbas. This problem can be solved by allocating a minimal residual belief ζ to
∅ and Ω, respectively. Other rules are listed in [32, 39, 34]. It is not intended in this article to review all
existing rules, but only the most popular or relevant ones for our study.

3.2. Properties of combination rules

The way rules manipulate sources of information is described by several properties. These properties
and their relevancies are briefly reviewed in this subsection. Formal definitions are not included but can be
found in [39, 34, 32].

2The terms conjunctive and disjunctive and the underlying assumptions are presented in Section 3.2.2
3The function v is the disjunctive counterpart of function w, see [6] for a detailed definition of function v.
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Table 1: Several combination rule equations for two sources of information. A,B, C ⊆ Ω. Z is a normalization factor. Av is a

bba such that Av (∅) = v and Av (A) = 1 − v. Ξ (A,B) = m1(A)2m2(B)
m1(A)+m2(B)

+ m2(A)2m1(B)
m2(A)+m1(B)

. ǫ is a discounting coefficient. Ri is

the reliability coefficient of function mi. ∧ is the minimum operator. (*): closed-world assumption.

⊕ (*) m⊕ (A) = 1
1−κm ∩© (A) , κ = m ∩© (∅)

DPR (*) mdpr (A) = m ∩© (A) +
∑

B∩C=∅,B∪C=A

m1 (B)m2 (C)

∩© m ∩© (A) =
∑

B∩C=Am1 (B)m2 (C)

RCR (*) mrcr (A) =
κ

1− κ+ κ2
m ∪© (A) +

1− κ

1− κ+ κ2
m ∩© (A)

∪© m ∪© (A) =
∑

B∪C=Am1 (B)m2 (C)

MMR mmmr (A) =
∑

B∪C=A

(

1−
|B ∩ C|

|B ∪ C|

)

m1 (B)m2 (C) +
∑

B∩C=A

|B ∩C|

|B ∪C|
m1 (B)m2 (C)

∪© m ∪© (A) =
∑

B∆C=Am1 (B)m2 (C)

PCR6 mpcr6 (A) = m ∩© (A) +
∑

B∩A=∅

Ξ (A,B)

∧© m ∧© (A) = ∩©A⊂ΩA
w1(A)∧w2(A)

DPCR mdpcr (A) = m ∩© (A) +
∑

B∩A=∅

ǫΞ (A,B) +
∑

B∪C=A,B∩C=∅

(1− ǫ)m1 (B)m2 (C)

∨© m ∨© (A) = ∪©A⊂ΩAv1(A)∧v2(A)

MDPCR mmdpcr (A) =
∑

B∪C=A,B∩C 6=∅

(

1−
|B ∩ C|

|B ∪ C|

)

m1 (B)m2 (C) +
∑

B∩A=∅

ǫΞ (A,B)

+
∑

B∩C=A,B∩C 6=∅

|B ∩ C|

|B ∪ C|
m1 (B)m2 (C) +

∑

B∪C=A,B∩C=∅

(1− ǫ)m1 (B)m2 (C)

ZR (*) mz (A) =
1

Z

∑

B∩C=A

|A|

|B| |C|
m1 (B)m2 (C)

DAR (*) mdar (A) = R1m1 (A) +R2m2 (A)
YR (*) my (A) = m ∩© (A) ,my (Ω) = κ+m ∩© (Ω)

DMR mdmr (A) =
1
Z

[

R1R2m ∪© (A) + [R1R2 −R1 −R2] (1−R1R2)m ∩© (A)
]

3.2.1. Algebraic properties

In these paragraphs, some of the most usual algebraic properties are listed:

• Commutativity and associativity: combined with commutativity, associativity allows a source-
order-independent combination. The same goal can be reached by substituting quasi-associativity
introduced by Yager [43] for associativity. If pieces of evidence are all available at the time of the
combination (batch mode), then an n − ary version of the rule suffices. If pieces of evidence are
collected sequentially, then an updating scheme is often needed to avoid high computational cost.

• Idempotence: using an idempotent rule, no elementary piece of evidence is counted twice which is
helpful in the case of non-distinct evidences. In practice, most pieces of evidences coming from sources
relying on the same observation are not distinct but overlapping.

• Existence of a neutral or absorbing element: Some rules are designed so that the vacuous bba
Ω0 has no impact on the fusion result, i.e. the vacuous bba is a neutral element of the rule.

Table 2 lists the combination rules examined and their algebraic properties.

3.2.2. Conjunctive vs. disjunctive behaviours

The nature of a combination is closely related to informational ordering. Using a conjunctive rule, the
result of the combination is more committed than each aggregated bba. Thus, conjunctive combinations
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Table 2: Several combination rules and their properties - part 1. ×: the rule has the corresponding property.
COM=commutativity, ASSO=associativity, Q-ASSO=quasi-associativity and IDEM=idempotence

Algebraic properties Algebraic properties
COM ASSO Q-ASSO IDEM COM ASSO Q-ASSO IDEM

⊕ × × DPR × ×
∩© × × RCR × ×
∪© × × MMR ×
∪© × × PCR6 × ×
∧© × × × DPCR × ×
∨© × × × MDPCR ×
ZR × DAR × × ×
YR × × DMR × ×

Table 3: Several combination rules and their properties - part 2. ×: the rule has the corresponding prop-
erty. CONJ=conjunctive, κ-CONJ=purely conjunctive if κ = 0 and partially conjunctive and disjunctive if κ > 0,
CONJ/DISJ=partially conjunctive and disjunctive, DISJ=disjunctive and OTHER=other kind

Combination nature related properties Combination nature related properties
CONJ κ-CONJ CONJ/DISJ DISJ OTHER CONJ κ-CONJ CONJ/DISJ DISJ OTHER

⊕ × DPR ×
∩© × RCR ×
∪© × MMR ×
∪© × PCR6 ×
∧© × DPCR ×
∨© × MDPCR ×
ZR × DAR ×
YR × DMR ×

and the underlying commitments are appropriate when sources tell the truth, i.e. are reliable.
Conversely, a disjunctive rule produces a bba that is less committed than the ones from which it originated.
However, disjunctive combinations are appropriate when some of the sources tell the truth but we do not
know which ones. Under such circumstances, it is too risky to commit oneself to one of the pieces of evidence.
Further comments on conjunction and disjunction can be found in [8, 38, 39].
There is a third category of combination nature, if it is thought that only one source is true, but it is not
known which one. This view corresponds to the exclusive disjunctive rule. Generally speaking, α-junction
rules, whose behaviours are in between conjunctive and disjunctive, are not easy to interpret (see [38, 28]).
The exclusive disjunctive rule assumption does not suit VT context and therefore is no longer discussed in
this article.
Table 3 shows which class of behaviour a rule belongs to. A majority of rules are partially conjunctive and
disjunctive. Some of them use ∪© only as part of the conflict redistribution (denoted κ-CONJ in table 3).
The others use ∪© in a broader way (denoted CONJ/DISJ in table 3).

3.2.3. Subsets related properties

In this section, we introduce two properties arising from VT application. Using a conjunctive rule, the
mass allocated to ∅ increases and that of Ω decreases. Similarly, using a disjunctive rule the mass allocated to
Ω increases and that of ∅ decreases. We denote respectively these phenomena by: ∅ ≻ { ∩©, ∧©}, Ω ≻ { ∪©, ∨©},
∅ ⊣ { ∪©, ∨©} and Ω ⊣ { ∩©, ∧©}. These phenomena are a consequence of the nature of the combination and
cannot be avoided but, in practice, they may yield bbas assigning excessive masses to ∅ or Ω. In the end,
the result of the fusion may be unexploitable (see a remark of Smets in the very last paragraph of [39]).
A generalization of these phenomena can be formalized for any subset and any rule but, in this article, our
practical needs are limited to monitoring rule behaviours toward ∅ and Ω.

6



3.3. Multiple-rule combination schemes

Clearly, the more properties needed, the more difficult it is to design an appropriate rule as in any con-
straint satisfaction problem. If a property is needed in a situation A whereas in a situation B an antagonistic
property is needed, then a conditioning step can be used to identify the present situation and then select a
rule. Even after conditioning, and therefore reducing the number of constraints, some incompatibilities may
remain. It is then necessary to define priorities among these properties, i.e., a hierarchy.
As explained in the introduction, more complex fusion schemes can be designed in order to overcome single
rule limitations. A discounting conditioned by contextual data can be applied to bbas before combination.
This process can tune bbas, alleviating inconvenient evidences that would prevent bbas from being efficiently
processed by a single rule. The conditions under which a bba must be discounted are context-dependent.
Generally speaking, discounting should not be opposed to other methods because it is a complementary tool
that can help to solve simply some unreliability related problems.
Some rules such as DAR or DMR enclose a conditioning step because the output bba depends on external
data. Kallel and Le Hégarat-Mascle [15] worked on partial distinctness. The proposed rule, called the
cautious-adaptative rule, varies from the conjunctive rule to the cautious rule depending on a parameter
Q ∈ [0, 1]. The value of Q is obtained using a priori knowledge on evidence distinctness.
In [39], Smets proposes a conditional scheme. A large number of conditions are examined leading to some
rule selection and discounting. This scheme is limited to conflict management issues. Furthermore, only one
rule is selected and applied to all bbas. The assumption that one rule meets all requirements is not verified
in our VT application even if it is carefully selected (see 4.2.2).
Ha-Duong [12] proposes a hierarchical approach based on two combination rules. This approach is designed
for the fusion of groups of experts’ opinions. Within each group of experts the cautious rule is used, and
the bbas resulting from these combinations are then aggregated using the disjunctive rule. The process is
not conditioned by input bbas and therefore the choice of rules is static. It does not fit VT application in
which sources evolve and necessitate dynamic rule selections.
Quost et al. [30, 29] designed an approach both hierarchical and conditional. Bbas are clustered regarding
bba dependency criteria. An appropriate rule is then applied within each bba cluster. Following a dendro-
gram hierarchy, other levels of fusion are then needed to aggregate newly generated bbas. The method is
dedicated to non-distinct source combination issues. A priori information is needed for combination rule
learning.
In this article, we intend to develop a hierarchical and conditional combination scheme (HCCS) allowing
VT requirements to be met.

4. Evidential fusion scheme induced by visual tracking

In this section, the VT problem is formalized and an evidential particle filter (EPF) is proposed as a
solution. Then, the data fusion constraints induced by VT are examined and translated into combination
rule property requirements. A hierarchical and conditional combination scheme is introduced so as to deal
with these requirements.

4.1. Visual tracking using EPFs

The VT problem can be expressed as follows: the position of a target object must be identified in each
image of a video. In this article, a bounding box is used to represent an object position within an image. This
representation has the advantage of being coded by only four time-dependent parameters: (x1,t, x2,t,Wt, Ht)
with (x1,t, x2,t) the box centre coordinates, Wt the box width and Ht the box height at time t. Finding out
the actual values of these parameters for each t is equivalent to solving the VT problem.
There are many ways to estimate these parameters. Particle filters (PFs) [14, 26] have gained popularity
among the computer vision community because of the compromise they offer in terms of both precision and
computation time. They are notably preferred to Kalman filters which are restricted to linear models and
Gaussian noises. PFs estimate a state vector Xt whose value is the answer to the problem at stake, hence
Xt = (x1,t, x2,t,Wt, Ht). In each image of the sequence, the filter samples several sub-images, i.e., several

7



Figure 1: A source turning from normal to weak. Red squares are locations to which the source assigns low weights. Green
ones are heavily weighted.

values of Xt also called particles and denoted X
(i)
t . It is then necessary to evaluate to what degree each

sub-image is likely to actually contain the target object. This evaluation is a crucial step of the filter and
is performed using an observation model. The efficiency of the filter relies on the relevance of the model
chosen.
Data fusion is frequently used to design more robust models. Some authors initially proposed Bayesian
fusion solutions since PFs rely on probability theory [2, 27]. The efficiency of Bayesian fusion depends on
the precision of density models and information delivered by the sources. Some sources in VT applications
happen to be highly imprecise whenever a situation causes a source to be out of its observation capacity
bounds.
As in many other applications, DST is an alternative to the Bayesian approach. Partial knowledge of the
problem can be modelled and a large number of fusion tools are available as shown in the previous section.
Thus, several authors have designed evidential particle filters (EPFs). Initially, extensions of the Kalman
filter to the DST were proposed in [20, 22, 40]. In [10], a DST step produces features that can be used as in
a classical PF. In [2], a PF is used for tracking along with DST for target classification into several object
categories. In [41], a particle filter using a DSmT fusion step is presented for multiple target tracking. Each
particle observation is compared to each target model. Two cues (location and colour) are combined using
a worked out combination rule, yielding a new bba whose belief or plausibility function updates particle
weights. In [17], three features are used and combined using the conjunctive rule. The pignistic transform
is applied to the combination result so as to update particle weights. In [24], a similar approach is extended
to multi-target multi-sensor tracking leading to further model developments.
In this article, we are not interested in how an EPF should be designed, but in determining a bba combination
scheme adapted to visual tracking EPFs. We also limit the problem to monocular single object tracking.
The EPF employed in our experiments is further presented in appendix A.

4.2. Information source disruptions in a VT context

To understand the relevance of adapting combination techniques to VT, we need to investigate what
events disrupt VT algorithms. Occlusion is one of these events. PFs have shown better robustness to
occlusions than other VT algorithms thanks to the fact that particles spread out during the course of an
occlusion, giving PFs a better chance to detect the object after the occlusion. An occlusion bans access to
visual information; image-based sources become ignorant, which is a case of major imprecision. Two other
events generate imprecision: illumination changes and particular movements to which feature extraction
methods may be sensitive. Figure 1 shows an example of an illumination change causing disruption to a
colour-texture feature based source.
Clutter also causes severe disruptions. As opposed to other events, clutter induces unreliability of sources
because they may identify two distinct locations for the target object whereas the tracking problem has
only one solution. One of the proposed locations is thus wrong and the source delivers wrong information.
Figure 2 illustrates a clutter situation causing a shape feature based source to turn unreliable. If the objects
are perfectly identical, then one cannot expect to distinguish them. In this extreme case, other tracking
techniques, such as multi-target tracking or trajectory analysis, should be applied. In this article, it is
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Figure 2: A Source turning unreliable

assumed that the objects can be distinguished using at least one source. However, this capacity may not be
constant over time.
In conclusion to the above remarks, VT makes it necessary to design a combination technique taking

high imprecision and unreliability into account. In the rest of this document, highly imprecise sources are
referred to as weak sources. Normal sources comprise all sources that are neither weak nor unreliable.
Thus, a normal source may contain some imprecision or unreliability which is considered as negligible. We
now present our HCCS that is composed of two main steps: bba analysis and hierarchical fusion.

4.2.1. BBA analysis

This step consists in detecting weak and unreliable sources. It relies on the possibility to collect contextual
information and therefore it is application dependent. We present here a simple method based on particle
filtering.
Only two tests are needed to identify sources as weak and unreliable. The first one is the ”weakness
test”, which separates weak sources from others. The weakness of the bba provided by Sj is determined
by thresholding the ignorance mj (Ω). To take a safer decision, the contextual information brought by a

particle filter can be used. EPFs evaluate mj (Ω) for each particle. Let us denote m
[

Sj , X
(i)
t

]

the bba of

source Sj at the location coded by particle X
(i)
t . The condition for detection as weak is thus:

1− min
i=1..N

m
[

Sj , X
(i)
t

]

(Ω) < tweak, (6)

with N the number of particles and tweak a threshold defined a priori. Sj is labelled as weak if there is
no particle yielding m [Sj ] (Ω) < 1 − tweak. To set tweak, one must identify up to what value labelling a
rather imprecise source as weak is risk-free. Under this condition, highly imprecise bbas do not impact
inappropriately on the fusion result.
The second test to perform is the ”unreliability test” that separates non-weak sources into unreliable sources
and normal sources. In this article, unreliability is detected if Sj identifies disjoint parts of the image
as containing the tracked object. One of them actually contains the object, whereas the others contain
something else that is similar to the object. PFs assign heavy weights to particles located near image
regions resembling the target. Thus, it is possible to use these weights as part of a dispersion measure, disp.
The unreliability condition for source Sj is then:

disp > tdisp, with disp =

N
∑

i=1

λ
(i,j)
t

(

(

x
(i)
1,t − x̄1,t

)2

+
(

x
(i)
2,t − x̄2,t

)2
)

, (7)

tdisp a threshold, and λ
(i,j)
t the weight generated by the source Sj at time t for particle X

(i)
t . The weights

are computed as if a one-source PF was used. X̄t =
(

x̄1,t, x̄2,t, W̄t, H̄t

)

is the weighted mean of particles:
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X̄t =
∑N

i=1 λ
(i,j)
t X

(i)
t . The mean values of height and width are not used because the size dispersion is not

relevant for clutter detection. The value of the threshold is easily obtained because the dispersion value
varies significantly when an outlier occurs. In our experiments, the threshold value was fixed dynamically:
tdisp = amin(Ht−1,Wt−1), with a ∈ R.
In the experiments, parameters of the bba analysis step are set by the user with an error/correction proce-
dure. Typical values of tweak and a are shown in the experiments, see Table 8.

4.2.2. First fusion level

Since the appropriate combination behaviour depends on labels, each possible pair of source types must
be examined:

• case 1: a weak source S1 combined with any type of source S2: the result should be a bba close
the one provided by S2. A weak source assigns a large mass to Ω; therefore the chosen rule should
lower the ignorance. In some sense, this is a generalization of the neutral impact of the vacuous bba
property.

• case 2: a normal source S1 combined with another normal source S2: both bbas represent reliable
pieces of evidence. A conjunctive combination is typically useful in this case so as to extract as much
common reliable information as possible. Normal sources are not always fully reliable, so a partially
conjunctive rule also fits.

• case 3: an unreliable source S1 combined with a normal or unreliable source S2: at least one bba
contains some erroneous evidence. A fully disjunctive combination is typically useful so as not to
discard any possibly relevant evidence. Given that Ω ≻ ∪©, it would be unwise to aggregate weak
sources using this rule. Consequently, if a source is both weak and unreliable, then the weak aspect
prevails over the unreliable aspect.

These three interlocking cases cover all possible pairwise source combinations provided that the rule is
commutative, which is implicitly assumed. The fact that the cases are interlocked implies a hierarchy.
Cases 1 and 2 match pretty well, since Ω ⊣ { ∩©, ∧©}. However, a strong incompatibility is raised by case 3,
since a source cannot be fully disjunctive and partially conjunctive at the same time, hence the need for a
fusion scheme instead of a single rule. Weaker requirements can be added: quasi-associativity (to limit the
computational cost of the combination) and the ability to process non-distinct sources (the process should
be as generic as possible). The order with which rules are applied and bbas combined is obviously important.
As a consequence, HCCS is not associative but if the chosen rules are quasi-associative, so is HCCS.
The combination of requirements from cases 1 and 2 indicates that bbas detected as normal or weak can be
jointly fused using a conjunctive rule; ∩© and ∧© are potential candidates. Case 3 requires a fully disjunctive
rule, therefore ∪© and ∨© are potential candidates. Following the secondary requirement concerning non-
distinct sources, bold and cautious rules should be preferred. However, because of the bba model used in
our experiments, most of the bbas produced are normalized, which impairs the use of the bold rule. The
experiments will show that the bold rule’s performances are pretty poor c.f. Subsection 5.4. The proposed
assignment is the following:

• weak and normal bbas, as well as bbas that are both unreliable and weak, are jointly aggregated with
rule ∧©;

• non-weak unreliable bbas are aggregated with rule ∪©.

Figure 3 summarizes the first fusion level.

4.2.3. Second fusion level

The first combination step yields two bbas: m ∪© and m ∧©. To fuse these two bbas, the first fusion step can
be applied to them if they are identified as normal, weak or unreliable. Normality is a dominant character
compared to weakness when using ∧©, so m ∧© is weak only if all the bbas combined with ∧© are weak. m ∧©

10



Figure 3: First fusion level of HCCS

is normal otherwise. As a combination of unreliable sources m ∪© is also unreliable. As a consequence of
Ω ≻ ∪©, m ∪© can be imprecise too. This imprecision is considered to be artificial and is not taken into
account.
Following requirements expressed in Subsection 4.2.2: if m ∧© is weak, mhccs = m ∧© ∧©m ∪© (case 3) and if
m ∧© is normal, mhccs = m ∧© ∪©m ∪© (case 1).
Note that, compared to related works, HCCS is not more computationally costly than a single rule in a
batch mode, since the same number of aggregations is needed. In a sequential mode, a incoming bba is
integrated to m ∪© or m ∧© by associativity, and the final fusion result is obtained by repeating the second
fusion substep, which is just one combination of two bbas.

5. Experiments

In this section, HCCS is evaluated in terms of VT performances. We use the EPF proposed in [17].
Sources are limited to visual information extractors. These extractors work on the same experiment (the
image sequence), and consequently sources are not necessarily distinct. So as to respond differently to
disrupting events, some of the following sources are used in the experiments:

• colour-texture source Sc−t. The colour-texture extraction method is based on cooccurrence matri-
ces [16]. Pairs of colours of neighbour pixels are counted and stored in these matrices.

• colour source Sc. As in [26], a colour density is used for this source. A colour density is a 3D colour
histogram in which colour occurrences are weighted by the distance from the centre pixel of the image
region.

• shape source Ss. The shape feature is a symmetry card [1]. Each image region column is considered
as a potential axis of symmetry and equally distant pixels are compared using a colour distance.

• motion source Sm. The motion is treated by detecting movement significantly different from the global
motion of the scene [18]. A histogram of movement is built from pixel movement intensities.

By cleverly combining these extractors’ assets, tracking can be maintained even if all kinds of previously
cited events occur. When HCCS performances are compared with another fusion technique, it is important
to stress that the same sources and the same EPF are used. We present below some implementation details
before showing experimental results.

5.1. Implementation

This subsection describes the frame of discernment on which bbas are defined and how visual information
is processed to construct bbas. These bbas feed the fusion technique which itself feeds the EPF.

5.1.1. Frame of discernment

The frame of discernment is defined as Ω = {ω1, ω2, ω3}, with

• ω1: the sub-image contains the targeted object.

• ω2: the sub-image contains a piece of the scene background.

• ω3: the sub-image contains any other object independent from background.

Ω can be reasonably thought to cover all possibilities and to be composed of exclusive hypotheses. In this
frame of discernment, our goal is now to estimate each source bba and then to combine them using HCCS.
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Table 4: Focal elements of implemented sources and their semantics.

source focal element semantics
Sc−t {ω1} the sub-image contains the object

{ω2} the sub-image contains a piece of the scene background
Sc {ω1} the sub-image contains the object
Ss {ω1} the sub-image contains the object
Sm {ω1, ω3} the sub-image contains an object independent from the background

5.1.2. BBA construction

For any source Sj and particle X
(i)
t , features are extracted from the analysed sub-image and compared

to reference features known a priori. The set of reference features constitute the object model (or models if
other elements of the scene are analysed). Model learning is rudimentarily performed on the first image of the
processed sequence, since at t = 0 the object location is known. By matching a model with the observations
drawn in the sub-image a distance dA

4 can be computed, with A ( Ω a hypothesis in accordance with the
model semantics. Indeed, model/observation matching is not possible for any subset A, it depends on the
information source and its interpretation regarding the VT problem. Focal element selection is summarized
in Table 4.
The Bhattacharyya distance is an efficient metric for histograms [26] and it can be directly applied to

all outputs of feature extraction techniques presented above. 2D or 3D feature arrays are processed as 1D
arrays so as to obtain dA. A Gaussian model is used to define simple bbas:

mA [Sj ] = A
1−exp

(

−
d2
A

2σ2
A,j

)

, (8)

with σA,j the standard deviation of the Gaussian function. These parameters are supposed to be fixed a

priori ; in our experiments they were set using an error/correction procedure.
The global bba for the colour-texture source is obtained by fusing the two colour-texture sbbas: m [Sc−t] =
m{ω1} [Sc−t] ∧©m{ω2} [Sc−t]. Other source bbas are obtained straightforwardly since they are composed of
only one sbba. For practical reasons, it was not possible to design more sbbas; for example, the shape of the
background is generally impossible to model. The movement source is much more imprecise than others;
therefore, the choice of focal elements for this source reflects its imprecision. Note that this bba construction
model can be regarded as a 1-ppv version of Denoeux’s model [4]. Further information on more refined bba
models can be found in [5, 7].

5.2. Results and discussions

VT results were ground-truth-validated using a tracking rate measure r ∈ [0, 1], more widely known as
the dice coefficient. This measure evaluates a tracking algorithm performance by comparing its estimation

of vector Xt to a ground-truth estimation of the same vector: r = 2×S(A∩B)
S(A)+S(B) . S is the surface area of a set in

pixels, A is the estimated object bounding box, and B is the ground-truth object bounding box. The closer
r is to 1, the more precise the algorithm. The smaller the variations of r, the more robust the algorithm.
In the following paragraphs, tracking efficiency is tested on videos containing the disrupting events mentioned
in Section 4.2. HCCS is first tested on three different sequences corresponding to different data fusion
challenges. In each case, HCCS is compared to ∩© and ∪© using the measure r. For the sake of clarity,
comparisons to other rules are gathered in Subsection 5.4, where more general conclusions on the experiments
are also proposed.

5.2.1. Impact of imprecise sources

This experiment focuses on weak source combination therefore the unreliability test is disabled. The
experiment is carried out on a sequence named ”tennis ball”. Its characteristics are summarized in Table 5.

4The dependency on indexes j, i and t is omitted to simplify notations.
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Table 5: Tennis ball sequence characteristics.

sources used conflict disrupting event
Sc−t m{ω2} [Sc−t] is not used, a brutal illumination change occurs, turning the

no conflict is generated colour-texture source from ”normal” to ”weak”
Ss no conflict
Sm no conflict the source varies from ”normal” to ”weak”

as the target moves or not.

This experiment is a typical case for which one-source approaches relying on colour information fail5.
With the help of other types of sources, the tracking can be maintained provided that the fusion technique
is not sensitive to imprecision. In Figure 4, tracking results obtained thanks to HCCS are compared with
those of a PF relying only on Sc−t.

Figure 4: ”tennis ball” sequence. Top: successful tracking in presence of an illumination change with HCCS. Bottom: tracking
failure with a PF relying on Sc−t.

These bba analysis results are consistent with the scene description. An illumination change occurs
around image 52. Since no source is identified as unreliable in this example, HCCS is equivalent to the
cautious rule.
In Figure 5, the tracking rate evolution is represented for ∪©, ∩© and HCCS. Unlike the disjunctive rule,
HCCS is clearly insensitive to imprecise sources. Using the conjunctive behaviour of the cautious rule,
HCCS exploits informative pieces of evidence. As the HCCS tracking rate shows, the tracking is maintained
throughout the 149-frame sequence. There is no background model defined on that sequence, so no conflict is
generated. Consequently, most of the other rules give very similar results compared to ∩©, see Subsection 5.4.

5.2.2. Impact of unreliable sources

As this experiment focuses on unreliable source combination, the weakness test is disabled. The experi-
ment was carried out on a sequence named ”two cars”. Its characteristics are summarized in Table 6. The
target is a grey car. The presence of a white car generates a clutter situation and consequently unreliability.
When the discriminative powers of the sources are damaged by an outlier, data fusion helps to accumulate
relevant information from each source so as to make a safer decision. Successful tracking on this sequence
using HCCS is presented in Figure 6. Figure 7 presents HCCS’s bba analysis step results. After frame 30,

5Illumination invariant colour features cannot usually overcome massive and sudden illumination changes.
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Figure 5: Tennis ball sequence. Top: bba analyses 1: ”normal”, 2: ”weak”, 3: ”unreliable”. Bottom: tracking rates several
combination techniques.

Table 6: Two cars sequence characteristics.

sources used conflict disrupting event
Sc−t m{ω2} [Sc−t] is not used, a clutter situation occurs: two objects

no conflict is generated (a grey car and a white car) have similar colour-texture
properties depending on the sun reflection on their bodies

Ss no conflict a clutter situation occurs: two objects
(a grey car and a white car) have similar shape properties
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Figure 6: ”two cars” sequence: successful tracking in presence of unreliable sources.

Table 7: Dog and ball sequence characteristics.

sources used conflict disrupting event
Sc−t m{ω2} [Sc−t] is used, target occlusion: another object hides the target

conflict is generated (the source becomes weak)
noise: the colour-texture model efficiency is damaged,

(the source becomes unreliable)
Ss no conflict target rotational motion: the symmetry features are useless
Sm no conflict target occlusion

both the dog and the ball are moving causing unreliability
Sc no conflict target occlusion

noise: the colour model efficiency is damaged

the white car is shadowed therefore the frequency of detection as unreliable increases for Sc−t. After frame
67, the white car leaves the scene and the clutter stops. Ss is less sensitive to the clutter situation which
means that the shape model of the grey car is more relevant than the colour-texture one.
In Figure 7, the tracking rate evolution is represented for ∩©, ∪© and HCCS. During the clutter, tracking
algorithms using ∩© or ∪© ”hesitate” between the two cars. This accounts for their rates dropping under 0.5.
∩© does not produce satisfactory results because if a single source gives credit to ω1 on two distinct regions
of the image, a conjunctive fusion will most likely maintain this credit for each of these regions. Under such
circumstances, HCCS selects the disjunctive rule and outperforms the conjunctive rule. Nonetheless, the
disjunctive rule may favour one of the two image regions even if the sources are very imprecise. Fortunately,
on this experiment, sources are not imprecise and unreliable at the same time. To ensure a safer fusion
process, the weakness test must be used as well.

5.3. Dealing with multiple failures

This experiment contains unreliable, weak as well as conflicting sources. It covers a wide range of data
fusion issues, thereby helping to validate HCCS in a broader context. The experiment is carried out on a
sequence named ”dog and ball”. Its characteristics are summarized in Table 7.

The target is a ball. A dog playing with the ball causes an occlusion and blinds all sources. Figure 8
presents HCCS’s results on this video. HCCS’s bba analysis step results are given in Figure 9. The bba
analysis results are consistent with the explanations given in Table 7. During the occlusion, Sc−t remains
”normal” because it also gives credit to {ω2} on image regions corresponding to the background (the lawn).
Sm is also active during the occlusion because the dog keeps moving.
The tracking rates are presented in Figure 9. The tracking rate of ∪© is damaged by Ss in the same way
as Sc−t causes damage in the ”tennis ball” sequence. Compared to ∩©, HCCS takes better advantage of
unreliable sources in the same way as in the ”two cars” sequence. Although Sc−t produces some conflict
mass, rules relying on conflict reallocation are not adapted to the present experiment, see Table 9. During
the major occlusion period, tracking rates are forced to 0 because, if the object cannot be seen, the meaning
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Figure 7: Two cars sequence. Top: bba analyses 1: ”normal”, 2: ”weak”, 3: ”unreliable”. Bottom: tracking rates several
combination techniques.
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Figure 8: ”dog and ball” sequence: successful tracking in the presence of an occlusion.

of a positive rate is questionable. As can be seen on Figure 9, the EPF recovers from the occlusion a lot
faster thanks to HCCS.

5.4. Comparison between HCCS and single combination rules

In this sub-section, rules’ and HCCS’s performances are compared through the three sequences presented
in the previous paragraphs using several measures: two quantitative measures µ and σ corresponding to the
average tracking rate and its standard deviation, and a qualitative measure MTF/ST. MTF means Major
Tracking Failure and ST means Satisfactory Tracking. The MFT/ST measure is evaluated by an expert.

5.4.1. Protocol

To compare HCCS with other approaches on an equal footing, the same amount of information must
be available for all of them. Indeed, HCCS can outperform combination rules thanks to the contextual
information that allows bba analysis. Consequently, analysis results were integrated to classical rules too.
Each rule is thus tested in three different situations:

• the rule is applied without the help of bba analysis results.

• the rule is applied on weak sources and on discounted unreliable sources. A relevant value for the
discounting coefficient α must be determined. If α is too small, the impact of unreliable sources is
nearly unchanged. If α is too high, the pieces of evidence brought by the source are suppressed. We
chose α = 0.7 which is a good compromise in our experiments.

• the rule is applied on discounted unreliable sources and weak sources are evicted. As explained in the
previous sections, weak sources damage the fusion result of several rules. Unlike unreliable sources,
they can be discarded as they carry little information.

In addition, some rules require a parameter tuning; test values are:

• for parameter ζ of ∨©: ζ ∈
{

10−1, 10−2, 10−3, 10−4, 10−5, 10−6
}

. ζ gives a minimal mass to ∅. Given
the implemented bba model, a source never produces a dogmatic bba, therefore ζ is never used for ∧©.
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Figure 9: Dog and ball sequence. Top: bba analyses 1: ”normal”, 2: ”weak”, 3: ”unreliable”. Bottom: tracking rates several
combination techniques. Partial occlusion periods in pink, major occlusion period in magenta.
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Table 8: Parameters of several rules giving highest value of µ. ×: test not relevant.
sequence name Tennis ball Two cars Dog and ball sequence name Tennis ball Two cars Dog and ball

∨© ζ = 0.1 ζ = 0.1 ζ = 0.1 DAR × R = 0.1 R = 0.9
∨©+ × ζ = 0.1 ζ = 0.1 DAR+ × R = 0.1 R = 0.8
∨©+* ζ = 0.1 × ζ = 0.1 DAR+* × × R = 0.4

DPCR × × ǫ = 0.7 DMR × R = 0.2 R = 0.4
DPCR+ × × ǫ = 0.8 DMR+ × R = 0.1 R = 0.2
DPCR+* × × ǫ = 0.8 DMR+* × × R = 0.9

MDPCR × × ǫ = 0.6 HCCS tweak = 0.0001 tweak = × tweak = 0.05
MDPCR+ × × ǫ = 0.8 a = × a = 7 a = 2
MDPCR+* × × ǫ = 0.4

• for parameter ǫ of DPCR and MDPCR: ǫ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. ǫ redirects the
conflict mass on different terms of the rule’s equation.

• for reliability coefficients Rj of DAR and DMR: Rj ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} if source
Sj is unreliable and Rj = 1 otherwise.

Among all these parameter values, the ones giving the highest values of µ were retained and are presented
in Table 8. Note that there is no unreliability test in the first experiment and no weakness test in the second
one, so some cells of the table are marked with the symbol ×.

5.4.2. Results and discussion

Table 9 summarizes the performances of HCCS and the various rules investigated in the VT application.

Several remarks can be made on examination of Tables 8 and 9:

• The nature of the combination is the only combination rule property clearly producing different results
depending on the situation. As HCCS analyses these situations for each bba and selects the adequate
rule nature, it is therefore the only combination technique achieving a satisfying tracking on the three
test sequences.

• Conflict redistribution rules are not adapted to the type of unreliability arising in the experiments. As
demonstrated by several authors, conflict management can be of major importance in many applica-
tions [11]. If so, ∧© can be replaced with a conflict redistribution rule in HCCS.

• Weak source eviction improves the performances of ∪©, proving that Ω ≻ ∪© must be taken into account
inside the fusion process.

• In the second experiment, which focuses on unreliability, conditional discounting slightly improves the
performances of most rules, but is not sufficient to prevent a partial loss of tracking.

• the bba models used in the experiments are inadequate for the bold rule, whose best performance is
always met for ζ = 0.1.

Note that, if parameters a and tweak are not set correctly, the bba analysis results are erroneous and the
VT performances of HCCS are then no better than those of single rules. This proves that the contextual
information brought by the bba analysis is meaningful and adequately exploited by HCCS.
Furthermore, it is important to stress that these results depend on the bba models and the tracking problem
definition. Better bba models [4, 5, 7] or other problem representations [22] should significantly improve the
VT performances.

6. Conclusion

In this article, we have presented a novel evidential fusion scheme adapted to visual tracking challenges.
Visual tracking induces specific data fusion issues regarding notably highly imprecise or unreliable sources.
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Table 9: Global performances for all implemented rules and HCCS. The most remarkable results for each rule are in bold font.
+: conditional discounting was used. *: weak sources evicted. ×: test not relevant. ST=satisfactory tracking, MTF=major
tracking failure.
sequence name Tennis ball Two cars Dog and ball

sequence Imprecision Unreliability Imprecision and unreliability
characteristics (illumination change, (clutter) (occlusion, inaccurate

periodic motion) object models)
sources Sc−t, Ss and Sm Sc−t and Ss Sc−t, Sc, Ss and Sm

µ σ MTF/ST µ σ MTF/ST µ σ MTF/ST

⊕ 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5217 0.3124 MTF
⊕+ × × × 0.6409 0.1318 MTF 0.5164 0.3120 MTF
⊕+* 0.6773 0.2649 ST × × × 0.3568 0.3358 MTF

∩© 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5217 0.3124 MTF
∩©+ × × × 0.6409 0.1318 MTF 0.5152 0.3122 MTF
∩©+* 0.6773 0.2649 ST × × × 0.3568 0.3358 MTF

∪© 0.3376 0.4060 MTF 0.6052 0.1554 MTF 0.2697 0.2991 MTF
∪©+ × × × 0.6052 0.1554 MTF 0.2918 0.3043 MTF
∪©+* 0.6501 0.3248 ST × × × 0.4848 0.3296 MTF

∧© 0.7756 0.1546 ST 0.6390 0.1348 MTF 0.5087 0.3168 MTF
∧©+ × × × 0.6398 0.1327 MTF 0.5053 0.3163 MTF
∧©+* 0.6773 0.3006 ST × × × 0.3568 0.3358 MTF

∨© 0.7570 0.1438 ST 0.5212 0.1722 MTF 0.4677 0.3177 MTF
∨©+ × × × 0.5864 0.1463 MTF 0.4942 0.3154 MTF
∨©+* 0.7669 0.1473 ST × × × 0.4101 0.3376 MTF

ZR 0.7685 0.1506 ST 0.6422 0.1300 MTF 0.5356 0.3164 MTF
ZR+ × × × 0.6545 0.1195 MTF 0.5306 0.3138 MTF
ZR+* 0.5726 0.3645 ST × × × 0.4188 0.3417 MTF

YR 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5209 0.3136 MTF
YR+ × × × 0.6409 0.1318 MTF 0.5164 0.3120 MTF
YR+* 0.6773 0.2649 ST × × × 0.3568 0.3358 MTF

DPR 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5216 0.3131 MTF
DPR+ × × × 0.6409 0.1318 MTF 0.5135 0.3127 MTF
DPR+* 0.6773 0.2649 ST × × × 0.3564 0.3354 MTF

RCR 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5205 0.3134 MTF
RCR+ × × × 0.6409 0.1318 MTF 0.5130 0.3128 MTF
RCR+* 0.6773 0.2649 ST × × × 0.4059 0.3353 MTF

MMR 0.7779 0.1483 ST 0.6424 0.1303 MTF 0.5153 0.3106 MTF
MMR+ × × × 0.6529 0.1225 MTF 0.5126 0.3109 MTF
MMR+* 0.7771 0.1491 ST × × × 0.4035 0.3341 MTF

PCR6 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5204 0.3138 MTF
PCR6+ × × × 0.6409 0.1318 MTF 0.5164 0.3120 MTF
PCR6+* 0.6773 0.2649 ST × × × 0.3566 0.3357 MTF

DPCR 0.7673 0.1471 ST 0.6392 0.1327 MTF 0.5215 0.3132 MTF
DPCR+ × × × 0.6409 0.1318 MTF 0.5150 0.3138 MTF
DPCR+* 0.6773 0.2649 ST × × × 0.3568 0.3358 MTF

MDPCR 0.7779 0.1483 ST 0.6424 0.1303 MTF 0.5160 0.3108 MTF
MDPCR+ × × × 0.6529 0.1225 MTF 0.5129 0.3109 MTF
MDPCR+* 0.7771 0.1491 ST × × × 4064 0.3326 MTF

DAR 0.7075 0.2347 ST 0.6742 0.1023 MTF 0.5203 0.3133 MTF
DAR+ × × × 0.7116 0.0767 ST 0.5140 3138 MTF
DAR+* 0.7758⋆ 0.1567 ST × × × 0.4223 0.3371 MTF

DMR 0.3376 0.4060 MTF 0.6286 0.1417 MTF 0.5216 0.3125 MTF
DMR+ × × × 0.6235 0.1343 MTF 0.5168 0.3125 MTF
DMR+* 0.7976 0.1499 ST × × × 0.3708 0.3422 MTF

HCCS 0.7756 0.1546 ST 0.7388 0.0713 ST 0.6705 0.2122 ST
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The constraints imposed by these abnormal sources made it necessary to design a broader fusion technique
named the hierarchical and conditional combination scheme (HCCS). We propose to analyse bbas so as
to detect and identify unreliable or highly imprecise sources. The fusion problem can then be separated
in sub-problems, thereby reducing the number of constraints. We justify that two groups of bba can be
processed by the cautious and disjunctive rules respectively. The two output bbas are analysed as well and
aggregated using one of these two rules depending on the analysis results.
The bba analysis step is performed using contextual information brought by an evidential particle filter.
This filter is used as the tracking algorithm for our visual tracking application. The experiments show that
HCCS produces satisfactory visual tracking performances in spite of the presence of unreliable or highly
imprecise sources. As compared to single combination rules, HCCS responds adequately to all the tracking
scenarios examined. HCCS is a novel tool in the sense that it adapts itself individually to each source
whenever a new image arrives. In addition, HCCS computation cost is equivalent to that of a combination
rule.
The flexibility and robustness of combination schemes open new perspectives for other information fusion
applications. Indeed, HCCS can be extended to other types of bbas provided that some contextual infor-
mation allows an ad hoc bba analysis step. In future works, it is also intended to use HCCS in a multiple
object tracking context. The frame of discernment and bba construction presented in [22] can be used to
achieve multiple object tracking. It comprises a data association process between previous tracks and newly
obtained observations. HCCS can be used directly on each track for source combination. It may also be
possible to select a set of relevant particles for each object so that the bba analysis step can be run more
locally.

A. EPF used in our experiments

In this appendix, some details concerning the EPF used in our tests are presented. This EPF relies on
a sampling-importance-resampling with a multinomial resampling. Its evidential part is the one proposed

in [17]. The procedure is summarized in algorithm 1. λ
(i)
t is the weight of particle X

(i)
t . Yt is the random

variable representating observations. σ1, ..., σ4 are the standard deviation of the sampling density. These
parameters as well as the initial position of the object X0 are kwown a priori. The sampling density is
sub-optimal but allows a simplification of the particle weight update step.

Algorithm 1 EPF used in our experiments

EPF used in our experiments
for t=1 to end of sequence do
for i=1 to N do

Sample particles X
(i)
t using p

(

X
(i)
t |X

(i)
t−1

)

= (N (0, σ1) ,N (0, σ2) ,N (0, σ3) ,N (0, σ4))

for j=1 to M do
Evaluate m [Sj ]

end for
Use a DST combination method to aggregate the sources and calculate the pignistic transform BetP

Obtain the likelihood p
(

Yt|X
(i)
t

)

= BetP (ω1)

Update weights using λ
(i)
t ∝ λ

(i)
t−1p

(

Yt|X
(i)
t

)

Normalize weights λ̃
(i)
t =

λ
(i)
t

∑

N
j=1 λ

(i)
t

end for

Estimate the filtering density p (Xt|Y1:t) =
∑N

i=1 λ̃
(i)
t δ

X
(i)
t

(Xt)

Re-sample N new particles X̃
(j)
t among X

(i)
t with probability λ

(i)
t and assign them the weights λ

(j)
t = 1

N
end for
End
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Note that HCCS can be used with any EPF. The one described in this appendix was chosen for its
simplicity, therefore the influence of a combination method on the VT performances is easier to interpret.
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