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▶ A smaller model into a larger
model into a larger one...

▶ Mixture models

▶ Hierarchical Bayesian models



Mixture models p.3
definition

▶ A mixture model is a convex combination of posterior
(predictive) distributions pY|X;θi (y|x) :

pY|X;Θ (y|x) =
M∑

m=1
πmpY|X;θm (y|x)

▶ The combined distribution depends on the sources parameters
θi and the combination parameters πm :

Θ = {θ1, . . . ,θM, π1, . . . , πM} .

▶ We have
∑M

i=1 πm = 1 and πm ≥ 0, ∀m.



Mixture models p.4
definition

▶ Each sub-model is probabilistic :

f̂m (x) = pY|X;θm (y|x) .

▶ argmax
y

pY|X;Θ (y|x) is a weighted vote of the sub-model

predictions
{
argmax

y
fm(x)

}M

m=1
.

▶ All parameters can be jointly learned from Dtrain using EM.

▶ This is in contrast with LOPs which train each fm on (a
smaller) Dtrain and learn parameter (πm)M

m=1 on Dval.

▶ Non-probabilistic techniques (SVM, k-NN) cannot be
assembled in this way.



Mixture models p.5
Example - Mixture of LogRegs

▶ Impossible to fit a linear model to this dataset :

▶ Let’s try to fit a mixture of 2 logistic regressions.



Mixture models p.6
Example - Mixture of LogRegs

▶ Outputs y are binary variables {0; 1} and inputs x are vectors
in Rd.

▶ The posterior is :

pY|X;Θ (y|x) = π1 (1 − ŷ1)
1−y ŷy

1 + π2 (1 − ŷ2)
1−y ŷy

2,

=

{
π1ŷ1 + π2ŷ2 if y = 1
π1 (1 − ŷ1) + π2 (1 − ŷ2) if y = 0

,

with ŷ1 = sgm
(
θT

1 · x+
)

and ŷ2 = sgm
(
θT

2 · x+
)

the logistic
outputs and

x(i)+ =


x(i)1...
x(i)d
1





Mixture models p.7
Example - Mixture of LogRegs

▶ The likelihood is

L (Θ) = p (data|Θ) ,

=
n∏

i=1
p (datum number i|Θ) ,

=
n∏

i=1
pY|X=x(i);Θ

(
y(i)

)
,

=
n∏

i=1
π1

(
1 − ŷ(i)1

)1−y(i) (
ŷ(i)1

)y(i)
+ π2

(
1 − ŷ(i)2

)1−y(i) (
ŷ(i)2

)y(i)
.
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Example - Mixture of LogRegs

▶ Let us introduce latent variables z(i) ∈ {1; 2} standing for the
fact that example x(i) was generated by mixture component
number.

▶ z(i) ∼ Ber (π2) : P
(
z(i) = 1

)
= π1 and

P
(
z(i) = 2

)
= π2 = 1 − π1.

▶ The complete data 1 likelihood is then :

Lcomp (Θ) =
n∏

i=1
p
(

y(i), z(i)|x(i),Θ
)
,

=
n∏

i=1

2∏
k=1

(
πk

(
1 − ŷ(i)k

)1−y(i) (
ŷ(i)k

)y(i)
)1k(z(i))

.

▶ A fake multiplication appears because now each point is
concerned with only one component of the mixture !

1. hidden and observed data
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Example - Mixture of LogRegs

▶ E step : one can show that

Ez(1),..,z(n)
|D;Θ

[logLcomp (Θ)] =
n∑

i=1

2∑
k=1

γ
(i)
k

[
log (πk) +

(
1 − y(i)

)
log

(
1 − ŷ(i)k

)
+ y(i) log

(
ŷ(i)k

)]
,

γ
(i)
k =

πk
(

1 − ŷ(i)k

)1−y(i) (
ŷ(i)k

)y(i)

∑
k′ πk′

(
1 − ŷ(i)k′

)1−y(i) (
ŷ(i)k′

)y(i) .

▶ M step : parameters θi need to be estimated using a gradient
ascent (Newton’s method) while mixing weights are given by :

πk =
1
n

n∑
i=1

γ
(i)
k .
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Example - Mixture of LogRegs

▶ The fit result is

▶ See [Bishop 14.5.2] for more details.



Mixture of Experts p.11
definition

▶ The fact that sub-models fm are functions of x is not
exploited in the previous model.

▶ Mixtures of experts generalize this model by making mixing
weights input-dependent :

πk (x) = smax
(
VT · x

)
.

▶ In this context, mixing weights are called gating functions
and each fm is called an expert.



Mixture of Experts p.12
Example - Mixture of Linear Regressors

▶ Obviously, a linear regression is a good model for subsets of
the following data :

▶ The right figure shows trained gating functions for each
regressor.
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Example - Mixture of Linear Regressors

▶ E step : one can show that

Ez(1),..,z(n) [logLcomp (Θ)] =
n∑

i=1

2∑
k=1

γ
(i)
k

[
log

(
π
(i)
k

)
−

(
y(i) − θT

k · x(i)
)2

2σ2
k

]
,

γ
(i)
k =

π
(i)
k × 1√

2πσk
e
(y(i)−θT

k ·x(i))
2

2σ2
k

∑
k′ π

(i)
k′ ×

1√
2πσk′

e
(y(i)−θT

k′ ·x
(i))

2

2σ2
k′

,

π
(i)
k =smax

(
VT · x(i)

)
.

▶ M step : there is a closed-form MLE solution for parameters
θk and σk. V is estimated by gradient ascent (Newton’s
method).



Mixture of Experts p.14
Example - Mixture of Linear Regressors

▶ The fit result is

▶ See [Murphy 2012 - 11.4.3] for more details.



Bayesian Learning p.15

▶ A catch sentence for this chapter could be :
« Why use only one classifier when I can use many ? »

▶ With Bayesian learning, this would become :
« Why use only one classifier when I can use infinitely many ? »

▶ Let us see under which circumstances such a result can be
achieved.



Bayesian Learning p.16
starting point

▶ Most of learning algorithms translate into an optimization
problem of the following kind :

argmin
θ

DataFit (θ) + Regularizer (θ) .

▶ In this setting, each f ∈ H is in bijective correspondence with
a given θ ∈ Θ.

▶ Almost all such algorithms have an equivalent probabilistic
formulation :

argmax
θ

Likelihood (θ) × Prior (θ) .



Bayesian Learning p.17
Linear regression example

▶ Suppose we are trying to predict the selling price y of a
house.

▶ For each house, we collected data like surface, previous buying
price, GPS coordinates, etc.

▶ These features are concatenated into a vector x ;

▶ We need to learn the function f0 mapping vectors x to y.

▶ We believe a linear combination of the features should be a
relevant model :

y = θT · x.



Bayesian Learning p.18
Linear regression example

▶ Yet we also believe that this linear combination is just an
approximation of f0 and therefore we go for a probabilistic
formulation :

Y ∼ N
(
θT · x, σ

)
.

▶ Now the likelihood is given by :

Likelihood (θ) =
n∏

i=1

1√
2πσ

e−
(y(i)−θT·x(i))

2

2σ2

▶ For simplicity, we assume the noise variance σ2 is known.
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Linear regression example

▶ We already have some beliefs on what values of θ are more
likely before seeing any datum :

Prior (θ) = 1
(2π)

d
2 det (V0)

1
2
e− 1

2 (θ−θ0)
T·V−1

0 (θ−θ0)

▶ After seeing data D, our belief is given by the following
posterior distribution

p (θ|D,θ0,V0) ∝ Likelihood (θ) × Prior (θ) .



Bayesian Learning p.20
Linear regression example

▶ If the prior parameters are such that θ0 = 0 and V0 = τ2I,
applying − log leads to the following cost function (up to an
additive constant)

J (θ) =
n∑

i=1

(
y(i) − θT · x(i)

)2

2σ2︸ ︷︷ ︸
Least Squares

+
1
τ2 ∥θ∥2︸ ︷︷ ︸

Ridge Reg.
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Linear regression example

▶ Going back to probabilities, one can show 2 that the posterior
p (θ|D,θ0,V0) is also Gaussian, in which case our prior is
conjugate 3.

p (θ|D,θ0,V0) ∼ N (θn,Vn) , (1)

θn = Vn

(
V−1

0 · θ0 +
1
σ2 XT · y

)
, (2)

Vn =

(
V−1

0 +
1
σ2 XT · X

)−1
, (3)

with X =


(
x(1)

)T

...(
x(n)

)T

 and y =

y(1)
...

y(n)

 .

2. We assumed data are centered.
3. Under conjugacy, learning boils down to updating the prior parameters and

the updates are easy to compute.
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Linear regression example

▶ No fusion for now .. just Bayesian statistics !

▶ As learners, what we really need is the posterior predictive
p (y|x,D).

▶ The expectation of this distribution is our proxy for f0 and
allows to make a prediction for the selling price of a house
whose features are the entries of the unseen example x.



Bayesian Learning p.23
Linear regression example

▶ Observe that the predictive distribution is free of unobserved
parameter conditioning... because we marginalized them
out :

p (y|x,D) =

∫
Θ

p (y|x,D,θ) p (θ|x,D) dθ (4)

▶ The above calculus is the weighted combination of an
infinity of regressors !

▶ The weights depend on the ability of each regressor to fit well
the data.
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Linear regression example

▶ In our linear regression case, we have

p (y|x,D) =

∫
Θ

p (y|x,D,θ) p (θ|x,D) dθ, (5)

=

∫
Θ

p (y|x,D,θ) p (θ|D) dθ, (6)

=

∫
Θ

G
(
y;θT · x, σ2)G (θ;θn,Vn) dθ, (7)

with G the Gaussian density function.

▶ Finally, one can show that

y|x,D ∼ N
(
θT

n · x, σn
)
, (8)

σ2
n = σ2 + xT · Vn · x. (9)
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Illustration (polynomial reg.)

[Murphy 2012 - 7.6]
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Comments

▶ The posterior predictive is not always known in closed form
−→ use Monte-Carlo to approximate the marginalization.

▶ Have we really gotten rid of all the parameters ?

▶ No, we are still conditioning w.r.t. θ0 = 0 and V0.

▶ They can be marginalized out too by introducing a
distribution for them called a hyperprior. This setting is
known as hierarchical Bayes.
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Back to linear aggregation

Let’s start with model selection
Example : Polynomial regression with small degree q = 1
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Back to linear aggregation

Let’s start with model selection
Example : Polynomial regression with higher degree q = 2
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Example : Polynomial regression with degree q
▶ In model selection, the candidate value for q is sought using,

for example, CV.
In general, it could be obtained as

q∗ = argmax
q∈N∗

p (q|D) .

▶ In model averaging, several candidate values for q are
considered. We are now writing the predictive posterior as

p (y|x,D) =
∑
q∈N∗

p (y|x,D, q) p (q|x,D) ,

=
∑
q∈N∗

p (y|x,D, q) p (q|D) .

▶ Linear combination of the conditional predictive distributions
p (y|x,D, q).
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Back to linear aggregation

▶ This will turn out to be a selection if I have enough data so
that chances are concentrated on a given value q∗ such that
p (q∗|D) ≈ 1.

▶ In the polynomial regression setting, we have
p (y|x,D, q) = N

(
polyq (x) , σ2) .

▶ For each q, regression parameters θ have been marginalized
out using Bayesian learning.

▶ Given a prior p (q) on polynomial degrees, we also have
p (q|D) ∝ p (D|q) p (q) .

▶ BMA only works for probabilistic models allowing to
determine both p (q|D) and p (y|x,D, q).



Bayesian Model Averaging p.31
Back to linear aggregation

▶ BMA will not select the best model (risk minimizer) if the
true hypothesis f0 is not one of the polynomials polyq.

▶ Its philosophy is close to hierarchical Bayes in the sense that
each hyperprior parameter choice can be regarded as a given
model.

▶ Difference with a mixture model :

Mixture Model BMA

1 model Many models and one of them
is the good one

The data is explained by
multiple components

The data is explained by one
of the model

(This model might be itself a
mixture model.)


