Ensemble Learning - 4 Matriochka models

John Klein

(centralelille

- A smaller model into a larger model into a larger one...
- Mixture models
- Hierarchical Bayesian models

[^0]- A mixture model is a convex combination of posterior (predictive) distributions $p_{Y \mid X ; \theta_{i}}(y \mid \mathbf{x})$:

$$
p_{Y \mid X ; \Theta}(y \mid \mathbf{x})=\sum_{m=1}^{M} \pi_{m} p_{Y \mid X ; \theta_{m}}(y \mid \mathbf{x})
$$

- The combined distribution depends on the sources parameters θ_{i} and the combination parameters π_{m} :

$$
\Theta=\left\{\theta_{1}, \ldots, \theta_{M}, \pi_{1}, \ldots, \pi_{M}\right\}
$$

- We have $\sum_{i=1}^{M} \pi_{m}=1$ and $\pi_{m} \geq 0, \forall m$.

Mixture models

- Each sub-model is probabilistic:

$$
\hat{f}_{m}(\mathbf{x})=p_{Y \mid X ; \theta_{m}}(y \mid \mathbf{x}) .
$$

- $\arg \max p_{Y X ; \Theta}(y \mid \mathbf{x})$ is a weighted vote of the sub-model predictions $\left\{\underset{y}{\arg \max } f_{m}(\mathbf{x})\right\}_{m=1}^{M}$.
- All parameters can be jointly learned from $\mathcal{D}_{\text {train }}$ using EM.
- This is in contrast with LOPs which train each f_{m} on (a smaller) $\mathcal{D}_{\text {train }}$ and learn parameter $\left(\pi_{m}\right)_{m=1}^{M}$ on $\mathcal{D}_{\text {val }}$.
- Non-probabilistic techniques (SVM, k-NN) cannot be assembled in this way.

Mixture models

Example - Mixture of LogRegs

- Impossible to fit a linear model to this dataset :

- Let's try to fit a mixture of 2 logistic regressions.

Example - Mixture of LogRegs

- Outputs y are binary variables $\{0 ; 1\}$ and inputs \mathbf{x} are vectors in \mathbb{R}^{d}.
- The posterior is:

$$
\begin{aligned}
p_{Y \mid X ; \Theta}(y \mid \mathbf{x}) & =\pi_{1}\left(1-\hat{y}_{1}\right)^{1-y} \hat{y}_{1}^{y}+\pi_{2}\left(1-\hat{y}_{2}\right)^{1-y} \hat{y}_{2}^{y}, \\
& =\left\{\begin{array}{ll}
\pi_{1} \hat{y}_{1}+\pi_{2} \hat{y}_{2} & \text { if } y=1 \\
\pi_{1}\left(1-\hat{y}_{1}\right)+\pi_{2}\left(1-\hat{y}_{2}\right) & \text { if } y=0
\end{array},\right.
\end{aligned}
$$

with $\hat{y}_{1}=\operatorname{sgm}\left(\theta_{1}^{T} \cdot \mathbf{x}_{+}\right)$and $\hat{y}_{2}=\operatorname{sgm}\left(\theta_{2}^{T} \cdot \mathbf{x}_{+}\right)$the logistic outputs and

$$
\mathbf{x}_{+}^{(i)}=\left[\begin{array}{c}
x_{1}^{(i)} \\
\vdots \\
x_{d}^{(i)} \\
1
\end{array}\right]
$$

Mixture models

Example - Mixture of LogRegs

- The likelihood is

$$
\begin{aligned}
\mathcal{L}(\Theta) & =p(\text { data } \mid \Theta) \\
& =\prod_{i=1}^{n} p(\text { datum number } i \mid \Theta), \\
& =\prod_{i=1}^{n} p_{Y \mid X=x^{(i) ;} ; \Theta}\left(y^{(i)}\right), \\
& =\prod_{i=1}^{n} \pi_{1}\left(1-\hat{y}_{1}^{(i)}\right)^{1-y^{(i)}}\left(\hat{y}_{1}^{(i)}\right)^{y^{(i)}}+\pi_{2}\left(1-\hat{y}_{2}^{(i)}\right)^{1-y^{(i)}}\left(\hat{y}_{2}^{(i)}\right)^{y^{(i)}} .
\end{aligned}
$$

Mixture models

- Let us introduce latent variables $z^{(i)} \in\{1 ; 2\}$ standing for the fact that example $\mathbf{x}^{(i)}$ was generated by mixture component number.
- $z^{(i)} \sim \operatorname{Ber}\left(\pi_{2}\right): P\left(z^{(i)}=1\right)=\pi_{1}$ and $P\left(z^{(i)}=2\right)=\pi_{2}=1-\pi_{1}$.
- The complete data ${ }^{1}$ likelihood is then :

$$
\begin{aligned}
\mathcal{L}_{\mathrm{comp}}(\Theta) & =\prod_{i=1}^{n} p\left(y^{(i)}, z^{(i)} \mid \mathbf{x}^{(i)}, \Theta\right) \\
& =\prod_{i=1}^{n} \prod_{k=1}^{2}\left(\pi_{k}\left(1-\hat{y}_{k}^{(i)}\right)^{1-y^{(i)}}\left(\hat{y}_{k}^{(i)}\right)^{y^{(i)}}\right)^{\mathbb{1}_{k}\left(z^{(i)}\right)} .
\end{aligned}
$$

- A fake multiplication appears because now each point is concerned with only one component of the mixture!

1. hidden and observed data

Mixture models

Example - Mixture of LogRegs

- E step : one can show that

$$
\begin{gathered}
\mathbb{E}_{\substack{z^{(1)}, \ldots, z^{(n)} \mid \mathcal{D} ; \Theta}}\left[\log \mathcal{L}_{\mathrm{comp}}(\Theta)\right]=\sum_{i=1}^{n} \sum_{k=1}^{2} \gamma_{k}^{(i)}\left[\log \left(\pi_{k}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{y}_{k}^{(i)}\right)\right. \\
\left.+y^{(i)} \log \left(\hat{y}_{k}^{(i)}\right)\right] \\
\gamma_{k}^{(i)}=\frac{\pi_{k}\left(1-\hat{y}_{k}^{(i)}\right)^{1-y^{(i)}}\left(\hat{y}_{k}^{(i)}\right)^{y^{(i)}}}{\sum_{k^{\prime}} \pi_{k^{\prime}}\left(1-\hat{y}_{k^{\prime}}^{(i)}\right)^{1-y^{(i)}}\left(\hat{y}_{k^{\prime}}^{(i)}\right)^{y^{(i)}}}
\end{gathered}
$$

- M step : parameters θ_{i} need to be estimated using a gradient ascent (Newton's method) while mixing weights are given by :

$$
\pi_{k}=\frac{1}{n} \sum_{i=1}^{n} \gamma_{k}^{(i)}
$$

Mixture models

Example - Mixture of LogRegs

- The fit result is

- See [Bishop 14.5.2] for more details.
- The fact that sub-models f_{m} are functions of x is not exploited in the previous model.
- Mixtures of experts generalize this model by making mixing weights input-dependent:

$$
\pi_{k}(\mathbf{x})=\operatorname{smax}\left(\mathbf{V}^{T} \cdot \mathbf{x}\right)
$$

- In this context, mixing weights are called gating functions and each f_{m} is called an expert.
- Obviously, a linear regression is a good model for subsets of the following data :

- The right figure shows trained gating functions for each regressor.

Example - Mixture of Linear Regressors

- E step : one can show that

$$
\begin{aligned}
\mathbb{E}_{z^{(1)}, \ldots, z^{(n)}}\left[\log \mathcal{L}_{\text {comp }}(\Theta)\right]= & \sum_{i=1}^{n} \sum_{k=1}^{2} \gamma_{k}^{(i)}\left[\log \left(\pi_{k}^{(i)}\right)-\frac{\left(y^{(i)}-\theta_{k}^{T} \cdot \mathbf{x}^{(i)}\right)^{2}}{2 \sigma_{k}^{2}}\right], \\
\gamma_{k}^{(i)}= & \frac{\pi_{k}^{(i)} \times \frac{1}{\sqrt{2 \pi} \sigma_{k}} e^{\frac{\left(y^{(i)}-\theta_{k}^{T} \cdot x^{(i)}\right)^{2}}{2 \sigma_{k}^{2}}}}{} \begin{array}{l}
\sum_{k^{\prime}} \pi_{k^{\prime}}^{(i)} \times \frac{1}{\sqrt{2 \pi} \sigma_{k^{\prime}}} e^{\frac{\left(y^{(i)}-\theta_{\left.k^{\prime} \cdot x^{(i)}\right)^{2}}^{2 \sigma_{k^{\prime}}}\right.}{2}} \\
\pi_{k}^{(i)}= \\
\\
\operatorname{smax}\left(\mathbf{V}^{T} \cdot \mathbf{x}^{(i)}\right) .
\end{array},
\end{aligned}
$$

- M step : there is a closed-form MLE solution for parameters θ_{k} and $\sigma_{k} . \mathrm{V}$ is estimated by gradient ascent (Newton's method).

Example - Mixture of Linear Regressors

- The fit result is

- See [Murphy 2012-11.4.3] for more details.
- A catch sentence for this chapter could be:
«Why use only one classifier when I can use many? »
- With Bayesian learning, this would become: «Why use only one classifier when I can use infinitely many? »
- Let us see under which circumstances such a result can be achieved.
- Most of learning algorithms translate into an optimization problem of the following kind :

$$
\underset{\theta}{\arg \min } \operatorname{DataFit}(\theta)+\operatorname{Regularizer}(\theta) .
$$

- In this setting, each $f \in \mathcal{H}$ is in bijective correspondence with a given $\theta \in \Theta$.
- Almost all such algorithms have an equivalent probabilistic formulation :

```
arg max Likelihood (0) }\times\mathrm{ Prior ( }0\mathrm{ ).
- Suppose we are trying to predict the selling price \(y\) of a house.
- For each house, we collected data like surface, previous buying price, GPS coordinates, etc.
- These features are concatenated into a vector \(\mathbf{x}\);
- We need to learn the function \(f_{0}\) mapping vectors \(\mathbf{x}\) to \(y\).
- We believe a linear combination of the features should be a relevant model :
\[
y=\theta^{T} \cdot \mathbf{x}
\]
- Yet we also believe that this linear combination is just an approximation of \(f_{0}\) and therefore we go for a probabilistic formulation :
\[
Y \sim \mathcal{N}\left(\theta^{T} \cdot \mathbf{x}, \sigma\right)
\]
- Now the likelihood is given by :
\[
\operatorname{Likelihood}(\theta)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y^{(i)}-\theta^{T} \cdot x^{(i)}\right)^{2}}{2 \sigma^{2}}}
\]
- For simplicity, we assume the noise variance \(\sigma^{2}\) is known.
- We already have some beliefs on what values of \(\theta\) are more likely before seeing any datum :
\[
\text { Prior }(\theta)=\frac{1}{(2 \pi)^{\frac{d}{2}} \operatorname{det}\left(\mathbf{V}_{0}\right)^{\frac{1}{2}}} e^{-\frac{1}{2}\left(\theta-\theta_{0}\right)^{T} \cdot \mathbf{V}_{0}^{-1}\left(\theta-\theta_{0}\right)}
\]
- After seeing data \(\mathcal{D}\), our belief is given by the following posterior distribution
\[
p\left(\theta \mid \mathcal{D}, \theta_{0}, \mathbf{V}_{0}\right) \propto \operatorname{Likelihood}(\theta) \quad \times \quad \operatorname{Prior}(\theta)
\]
- If the prior parameters are such that \(\theta_{0}=\mathbf{0}\) and \(\mathbf{V}_{0}=\tau^{2} \mathbf{I}\), applying - log leads to the following cost function (up to an additive constant)

\section*{Linear regression example}
- Going back to probabilities, one can show \({ }^{2}\) that the posterior \(p\left(\theta \mid \mathcal{D}, \theta_{0}, \mathbf{V}_{0}\right)\) is also Gaussian, in which case our prior is conjugate \({ }^{3}\).
\[
\begin{align*}
& p\left(\theta \mid \mathcal{D}, \theta_{0}, \mathbf{V}_{0}\right) \sim \mathcal{N}\left(\theta_{n}, \mathrm{~V}_{n}\right),  \tag{1}\\
& \theta_{n}=\mathrm{V}_{n}\left(\mathbf{V}_{0}^{-1} \cdot \theta_{0}+\frac{1}{\sigma^{2}} \mathbf{X}^{T} \cdot \mathbf{y}\right),  \tag{2}\\
& \mathrm{V}_{n}=\left(\mathbf{V}_{0}^{-1}+\frac{1}{\sigma^{2}} \mathbf{X}^{T} \cdot \mathbf{X}\right)^{-1},  \tag{3}\\
& \text { with } \quad \mathbf{X}=\left(\begin{array}{c}
-\left(\mathbf{x}^{(1)}\right)^{T}- \\
\vdots \\
- \\
\left(\mathbf{x}^{(n)}\right)^{T}-
\end{array}\right) \quad \text { and } \quad \mathbf{y}=\left(\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(n)}
\end{array}\right) .
\end{align*}
\]
2. We assumed data are centered.
3. Under conjugacy, learning boils down to updating the prior parameters and the updates are easy to compute.
- No fusion for now .. just Bayesian statistics !
- As learners, what we really need is the posterior predictive \(p(y \mid \mathbf{x}, \mathcal{D})\).
- The expectation of this distribution is our proxy for \(f_{0}\) and allows to make a prediction for the selling price of a house whose features are the entries of the unseen example \(\mathbf{x}\).
- Observe that the predictive distribution is free of unobserved parameter conditioning... because we marginalized them out :
\[
\begin{equation*}
p(y \mid \mathbf{x}, \mathcal{D})=\int_{\Theta} p(y \mid \mathbf{x}, \mathcal{D}, \theta) p(\theta \mid \mathbf{x}, \mathcal{D}) d \theta \tag{4}
\end{equation*}
\]
- The above calculus is the weighted combination of an infinity of regressors !
- The weights depend on the ability of each regressor to fit well the data.
- In our linear regression case, we have
\[
\begin{align*}
p(y \mid \mathbf{x}, \mathcal{D}) & =\int_{\Theta} p(y \mid \mathbf{x}, \mathcal{D}, \theta) p(\theta \mid \mathbf{x}, \mathcal{D}) d \theta  \tag{5}\\
& =\int_{\Theta} p(y \mid \mathbf{x}, \mathcal{D}, \theta) p(\theta \mid \mathcal{D}) d \theta  \tag{6}\\
& =\int_{\Theta} G\left(y ; \theta^{T} \cdot \mathbf{x}, \sigma^{2}\right) G\left(\theta ; \theta_{n}, V_{n}\right) d \theta \tag{7}
\end{align*}
\]
with \(G\) the Gaussian density function.
- Finally, one can show that
\[
\begin{align*}
y \mid \mathbf{x}, \mathcal{D} & \sim \mathcal{N}\left(\theta_{n}^{T} \cdot \mathbf{x}, \sigma_{n}\right)  \tag{8}\\
\sigma_{n}^{2} & =\sigma^{2}+\mathbf{x}^{T} \cdot \mathbf{V}_{n} \cdot \mathbf{x} \tag{9}
\end{align*}
\]

Illustration (polynomial reg.)


[Murphy 2012-7.6]
- The posterior predictive is not always known in closed form \(\longrightarrow\) use Monte-Carlo to approximate the marginalization.
- Have we really gotten rid of all the parameters?
- No, we are still conditioning w.r.t. \(\theta_{0}=\mathbf{0}\) and \(\mathrm{V}_{0}\).
- They can be marginalized out too by introducing a distribution for them called a hyperprior. This setting is known as hierarchical Bayes.

\section*{Back to linear aggregation}

Let's start with model selection
Example : Polynomial regression with small degree \(q=1\)


Let's start with model selection
Example : Polynomial regression with higher degree \(q=2\)


\section*{Bayesian Model Averaging}

Example : Polynomial regression with degree \(q\)
- In model selection, the candidate value for \(q\) is sought using, for example, CV.
In general, it could be obtained as
\[
q^{*}=\underset{q \in \mathbb{N}^{*}}{\arg \max } p(q \mid \mathcal{D})
\]
- In model averaging, several candidate values for \(q\) are considered. We are now writing the predictive posterior as
\[
\begin{aligned}
p(y \mid \mathbf{x}, \mathcal{D}) & =\sum_{q \in \mathbb{N}^{*}} p(y \mid \mathbf{x}, \mathcal{D}, q) p(q \mid \mathbf{x}, \mathcal{D}) \\
& =\sum_{q \in \mathbb{N}^{*}} p(y \mid \mathbf{x}, \mathcal{D}, q) p(q \mid \mathcal{D}) .
\end{aligned}
\]
- Linear combination of the conditional predictive distributions \(p(y \mid \mathbf{x}, \mathcal{D}, q)\).

\section*{Back to linear aggregation}
- This will turn out to be a selection if I have enough data so that chances are concentrated on a given value \(q_{*}\) such that \(p\left(q_{*} \mid \mathcal{D}\right) \approx 1\).
- In the polynomial regression setting, we have
\[
p(y \mid \mathbf{x}, \mathcal{D}, q)=\mathcal{N}\left(\operatorname{poly}_{q}(\mathbf{x}), \sigma^{2}\right)
\]
- For each \(q\), regression parameters \(\theta\) have been marginalized out using Bayesian learning.
- Given a prior \(p(q)\) on polynomial degrees, we also have
\[
p(q \mid \mathcal{D}) \propto p(\mathcal{D} \mid q) p(q)
\]
- BMA only works for probabilistic models allowing to determine both \(p(q \mid \mathcal{D})\) and \(p(y \mid \mathbf{x}, \mathcal{D}, q)\).

\section*{Bayesian Model Averaging}

\section*{Back to linear aggregation}
- BMA will not select the best model (risk minimizer) if the true hypothesis \(f_{0}\) is not one of the polynomials poly \({ }_{q}\).
- Its philosophy is close to hierarchical Bayes in the sense that each hyperprior parameter choice can be regarded as a given model.
- Difference with a mixture model :

\section*{Mixture Model}

1 model
The data is explained by multiple components

\section*{BMA}

Many models and one of them is the good one
The data is explained by one of the model
(This model might be itself a mixture model.)```


[^0]:    image pixabay.com

