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Matriochka models
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» A smaller model into a larger
model into a larger one...

» Mixture models

» Hierarchical Bayesian models
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Mixture models
definition

» A mixture model is a convex combination of posterior
(predictive) distributions pyx.e, (vIx) :

M
pvixe (V%) =Y Tmpvixe,, (vX)

m=1

» The combined distribution depends on the sources parameters
6; and the combination parameters 7, :

©0={01,....0m,71,...,TM} -

>Wehavez 1 ™m=1and 7, >0,Ym.
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Mixture models b

definition

v

Each sub-model is probabilistic :

,’\Cm (x) = PY|X:6,, (¥x) .

arg max py|x.e (yx) is a weighted vote of the sub-model
y

M
predictions {arg max fm(x)} :
y m=1

All parameters can be jointly learned from Dipain using EM.

This is in contrast with LOPs which train each f,, on (a
smaller) Dyyain and learn parameter (ﬂm)',;/’:l on Dyl

Non-probabilistic techniques (SVM, k-NN) cannot be
assembled in this way.



Mixture models
Example - Mixture of LogRegs

» Impossible to fit a linear model to this dataset :

3

> Let's try to fit a mixture of 2 logistic regressions.
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Mixture models 06
Example - Mixture of LogRegs

» Outputs y are binary variables {0; 1} and inputs x are vectors
in RY.

» The posterior is :

pyixo (Vx) = m(1=5)'" 7 F +m(1—5) 7V,
191 + m2ie ify=1
m (=) +m(l—5) ify=0"

with §1 = sgm (6] - x4 ) and §» = sgm (6, - x;.) the logistic
outputs and

X1
SO
NG



Mixture models o7
Example - Mixture of LogRegs

» The likelihood is
L£(®) = p(datal®),

= H p(datum number /0),
i=1

= f[Py]x:x(f);e (}’(i)) )
i=1

= TTm (1=30)7" (0) e (1=5) " (59)”.
i=1



Mixture models 08
Example - Mixture of LogRegs

» Let us introduce latent variables 2 € {1;2} standing for the
fact that example x() was generated by mixture component
number.

» A ~ Ber (m2) : P(Z(i) = 1) = and
P(z(i):2) =my=1—1m1.

» The complete data?! likelihood is then :

Leomp (@) = H p (Y2, 20x0,0).
i=1

- U (wa-)" 62)")

i=1 k=1

1,(0)

» A fake multiplication appears because now each point is
concerned with only one component of the mixture!

1. hidden and observed data



Mixture models 09
Example - Mixture of LogRegs

» E step : one can show that

E, 0 [108 Leomp (O)] _ZZ% [|0g ) + ( y(i)> o (1 _ }A/Sj)>

|D;:© i=1 k=1

e ()]

0 ”(1_yk) - (i)%
Y&k =
S

» M step : parameters 6; need to be estimated using a gradient
ascent (Newton's method) while mixing weights are given by :




Mixture models
Example - Mixture of LogRegs

» The fit result is

» See [Bishop 14.5.2] for more details.




Mixture of Experts p11

definition

» The fact that sub-models f,, are functions of x is not
exploited in the previous model.

» Mixtures of experts generalize this model by making mixing
weights input-dependent :
7k (x) = smax (VT - x) .

» In this context, mixing weights are called gating functions
and each f,, is called an expert.



Mixture of Experts p12

Example - Mixture of Linear Regressors

» Obviously, a linear regression is a good model for subsets of
the following data :

expent predictions, fixed mixing weights=0 gating functions, fixed mixing weights=0
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» The right figure shows trained gating functions for each
regressor.



Mixture of Experts

Example - Mixture of Linear Regressors

» E step : one can show that

i)
EZ(1)7__7Z(,,) [log Leomp (9)] —Z ny [|Og (Wk ) . (y(

i=1 k=1
(y(f)_eer(i)f
(’) 1 2(7,2(
A/(i) o T X \/27r(rke
=

Zk/ ﬂ.s(’/) X ﬁwe 2r7i/
WS(i) =smax (VT . x(i)) .

(y(f),e;.x(of ’

202

_gkr.x(f))2]
k )

» M step : there is a closed-form MLE solution for parameters
Ok and 0. V is estimated by gradient ascent (Newton's

method).



Mixture of Experts

Example - Mixture of Linear Regressors

» The fit result is

pradicted mean and var, fixed mixing weights=0

35 ] —05 [ 05 1

» See [Murphy 2012 - 11.4.3] for more details.
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Bayesian Learning

» A catch sentence for this chapter could be :

« Why use only one classifier when | can use many ? »

» With Bayesian learning, this would become :

« Why use only one classifier when | can use infinitely many 7 »

» Let us see under which circumstances such a result can be
achieved.
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Bayesian Learning p16
starting point

» Most of learning algorithms translate into an
problem of the following kind :

argmin DataFit (0) + Regularizer ().
0

> In this setting, each f € H is in bijective correspondence with
a given 0 € O.

» Almost all such algorithms have an equivalent probabilistic
formulation :

argmax Likelihood (#) x Prior(0).
6



Bayesian Learning

Linear regression example

» Suppose we are trying to predict the selling price y of a
house.

v

For each house, we collected data like surface, previous buying
price, GPS coordinates, etc.

These features are concatenated into a vector x:

v

v

We need to learn the function fy mapping vectors x to y.

We believe a linear combination of the features should be a
relevant model :

v

y=0"T.x.



Bayesian Learning b1

Linear regression example

> Yet we also believe that this linear combination is just an

approximation of fy and therefore we go for a probabilistic
formulation :

YNN(QT-X,J) .
» Now the likelihood is given by :

()0 T,x(,-))z

252

Wa

Likelihood (8) = H

» For simplicity, we assume the noise variance o2 is known.



Bayesian Learning b1

Linear regression example

» We already have some beliefs on what values of 8 are more
likely before seeing any datum :

Prior (0) = 1 o~ 1(0-00)7V5 (0-60)

(27)2 det (Vo)2

» After seeing data D, our belief is given by the following
posterior distribution

p(0|D,60,Vy) o Likelihood (#) x Prior(6).



Bayesian Learning b20

Linear regression example

» If the prior parameters are such that 8y = 0 and Vo = 72I,

applying — log leads to the following cost function (up to an
additive constant)

A — 9T . x(0)?
J(o) = Z( 53 ) + ||9”2
i=1 H/—/
Ridge Reg.

Least Squares



Bayesian Learning

Linear regression example

» Going back to probabilities, one can show? that the posterior
p(0|D, 8¢, Vyp) is also Gaussian, in which case our prior is
conjugate 3

p(g‘D,OO,VO) ~ N(0n7vn)7 (]‘)

1
On = Vn <Val ’ 00 + ;XT Y> ) (2)
1 -1
V, = [Vvl+=XT.X 3
c = (VaxTx) L@

7(x(1))T7 Yol
with X = : and y= :

. (x<r;>) T y<:">

2. We assumed data are centered.
3. Under conjugacy, learning boils down to updating the prior parameters and
the updates are easy to compute.



Bayesian Learning b2
Linear regression example

» No fusion for now .. just Bayesian statistics !

» As learners, what we really need is the posterior predictive
p(ylx, D).

» The expectation of this distribution is our proxy for fy and
allows to make a prediction for the selling price of a house
whose features are the entries of the unseen example x.



Bayesian Learning b23

Linear regression example

» Observe that the predictive distribution is free of unobserved
parameter conditioning... because we marginalized them
out :

pIx, D) = /ep<yx,1>,e)p(arx,1>>de (4)

» The above calculus is the weighted combination of an
infinity of regressors !

» The weights depend on the ability of each regressor to fit well
the data.



Bayesian Learning

Linear regression example

» In our linear regression case, we have
pOID) = [ p(ixD.0)p(6lx. D) .

— / _P0ix.D.0)p(6[D) b,

= / G(y;07-x,0%) G(0;0,,V,) db,
[C]

with G the Gaussian density function.

» Finally, one can show that

Y, D ~ N (0] -x,04),

02 = o +x"-V,-x

(5)
(6)
(7)

p.24



Bayesian Learning

[llustration (polynomial reg.)

plugin approximation (MLE)
o

w— prediction
Q training data

Posterior predictive (known variance)

= prediction
QO training data

[Murphy 2012 - 7.6]



Bayesian Learning

Comments

v

The posterior predictive is not always known in closed form
— use Monte-Carlo to approximate the marginalization.

» Have we really gotten rid of all the parameters?

» No, we are still conditioning w.r.t. 8g = 0 and V,.

v

They can be marginalized out too by introducing a
distribution for them called a hyperprior. This setting is
known as hierarchical Bayes.



Bayesian Model Averaging b2

Back to linear aggregation

Let's start with model selection
Example : Polynomial regression with small degree g =1

model H, target function fy

N A

feH

hypothesis h chosen hypothesis /
= learnt estimate f



Bayesian Model Averaging b2

Back to linear aggregation

Let's start with model selection
Example : Polynomial regression with higher degree g = 2

model # target function fy
: Usual setting :
1 feHs :
hypothesis h chosen hypothesis /

= learnt estimate f



Bayesian Model Averaging b2

Example : Polynomial regression with degree g

» In model selection, the candidate value for ¢ is sought using,
for example, CV.
In general, it could be obtained as

g" = argmax p(q|D).
geN*

» In model averaging, several candidate values for g are
considered. We are now writing the predictive posterior as

p(yx,D) = > p(x,D,q)p(alx, D),
qeEN*

= Y plyxD,q) p(qD).

geN*

» Linear combination of the conditional predictive distributions
p(ylx, D, q).



Bayesian Model Averaging

Back to linear aggregation

>

This will turn out to be a selection if | have enough data so
that chances are concentrated on a given value g, such that

p(q:/D) = 1.

In the polynomial regression setting, we have

p(yx,D,q) = N (poly, (x),0?) .

For each g, regression parameters 6 have been marginalized
out using Bayesian learning.

Given a prior p(q) on polynomial degrees, we also have

p(alD) < p(Dlq) p(q)-

BMA only works for probabilistic models allowing to
determine both p(q|D) and p(y|x, D, q).



Bayesian Model Averaging b3l

Back to linear aggregation

» BMA will not select the best model (risk minimizer) if the
true hypothesis fo is not one of the polynomials poly,,.

» Its philosophy is close to hierarchical Bayes in the sense that
each hyperprior parameter choice can be regarded as a given
model.

» Difference with a mixture model :

Mixture Model BMA
Many models and one of them

1 model .
is the good one
The data is explained by The data is explained by one
multiple components of the model

(This model might be itself a
mixture model.)




