
Ensemble Learning - 3
Boosting

John Klein

Boosting p.2

boosted weak learner

Goal : Build incrementally an ensemble so that new coming
classifiers fix misclassification errors of the previous ones.
Turn a weak classifier into a strong ensemble.

I Use bagging in case of overfitting (H is big → high variance
in trained predictors).

I Use boosting in case of underfitting (H is small → low
variance in trained predictors but high bias).

Boosting p.3

boosted weak learner

Remember the bad tree ?

I This is a weak learner that underfits data...

I But achieves ≈ 78% accuracy which is a lot better than
random guess.

Boosting p.4

boosted weak learner

Question : Can a set of weak learners create a single strong
learner ? [Kearns 88]

Answer : Yes [Schapire 90] (regardless of how is trained the weak
learner)

1 Train a ”bad tree” f1 on D(1) (D.

2 Train a ”bad tree” f2 on D(2) (D \ D(1) s.t. half of the
points in D(2) are misclassified by f1.

3 Train a ”bad tree” f3 on D(3) (D \ D(1+2) s.t. it contains
data points for which f1 and f2 disagree.

Then, the majority vote ensemble of (f1, f2, f3) has a smaller risk
than f1 (with high prob.).
The Strength of Weak Learnability, Schapire 1990.

Boosting p.5

boosted weak learner

Boosting p.6

AdaBoost

Sequentially train weak classifiers for a binary task y ∈ {−1; +1} :

1 Train weak classifier fm on the weighted training set

Dtrain ×
{
w

(1)
m , . . . ,w

(n)
m

}
.

2 Evaluate the classification uncertainty on each data point and
update weights accordingly.

3 Update classifier mixing coefficients αm

Finally, return fens = sign

(
M∑

m=1
αmfm

)
.

s (x) =
∑M

m=1 αmfm (x) ∈ R is a score whereas each fm (x) ∈ C is a
class label.

Boosting p.7

AdaBoost

One loss to rule them all !

I In classification, the standard loss function is the 0-1 loss.

I Boosting aims at minimizing a weighted 0-1 loss over the
training set :

Jm =
n∑

i=1

w
(i)
m

(
1− 1y (i)

(
fm
(
x(i)
)))

.

I The boosted ensemble, however, minimizes the exponential
loss :

Jens =
n∑

i=1

exp

(
−y (i) 1

2

M∑
m=1

αmfm
(
x(i)
))

.

Boosting p.8

AdaBoost

Question : does an exponential loss make sense ?

I Exponential loss = surrogate of the 0-1 loss

Boosting p.9

AdaBoost

Proof that optimizing Jens w.r.t. to fm = optimizing Jm.

I We define weights as

Jens =
n∑

i=1

exp

(
−y (i) 1

2

m−1∑
k=1

αk fk

(
x(i)
))

︸ ︷︷ ︸
:=w

(i)
m

× exp

(
−1

2
αmy

(i)fm
(
x(i)
))

.

I We deduce weight update :

w
(i)
m+1 = w

(i)
m exp

(
−1

2
αmy

(i)fm
(
x(i)
))

.

I Depending on the correctness of the prediction, the weight
grows or decreases.

Boosting p.10

AdaBoost

Proof that optimizing Jens w.r.t. to fm = optimizing Jm.

Let’s use the following decomposition of the ensemble loss :

I Denote M the set of misclassified points by fm.

I Denote T the set of correctly classified points by fm.

I We have

Jens = e
−αm

2

∑
i∈T

w
(i)
m + e

αm
2

∑
i∈M

w
(i)
m ,

= e
−αm

2

n∑
i=1

w
(i)
m +

(
e

αm
2 − e

−αm
2

) n∑
i=1

w
(i)
m

× I
{
fm
(
x(i)
)
6= y (i)

}
.

Boosting p.11

AdaBoost

Next problem : we need an incremental rule for fm and αm.

I Minimizing Jens wrt mixing coefficients gives

αm = log

(
1− εm
εm

)
, (1)

εm =

n∑
i=1

w
(i)
m I
{
fm
(
x(i)
)
6= y (i)

}
n∑

i=1
w

(i)
m

. (2)

Boosting p.12

AdaBoost

I If εm = 0.5 then αm = 0, the classifier is discarded from the
ensemble.

Boosting p.13

AdaBoost

Final problem : how to minimize a weighted loss Jm ?

First possibility : weak learner
is compatible.

ex : logistic regression

To learn, we differentiate the
cross-entropy loss w.r.t. the
model parameters.

Differentiating the weighted
version is no harder.

Second possibility : weak learner is
not compatible.

Sample a bootstrap sample from D
where each data point

(
x(i), y (i)

)
is

selected with probability

pi =
w

(i)
m∑

i ′ w
(i ′)
m

.

Train your new base learner on this
bootstrap sample.

Remark : in both cases we do not really minimize Jm which relies on the
0-1 loss.

Boosting p.14

AdaBoost

Illustration : boosted trees.

[Bishop 2006]

Boosting p.15

AdaBoost : pros and cons

Theoretical guarantees

I Bound on the ensemble empirical risk êens

êens =
n∑

i=1

1y (i)

(
fens
(
xi
))
≤ e

−2
M∑

m=1
(1
2
−εm)

2

.

I PAC-bound on the risk... but it increases w.r.t. M !

I PAC-bound on the margin (regardless of M).

→ More on this : The Boosting Approach to Machine Learning An
Overview, Schapire 2001.

Boosting p.16

AdaBoost : pros and cons

Limitations

I Outliers → much slower convergence.

I No probabilistic embedding.

I No obvious way to regularize.

I Limited interpretability.

Boosting p.17

Gradient boosting

The general idea :

I We want to train incrementally an ensemble whose aggregate

at previous step is f
(m)
ens

I The best additive corrective learner in H that we can add is
given by

f
(m+1)
ens = f

(m)
ens + arg min

h∈H
Ex ,y

[
L
(
y , f

(m)
ens (x) + h (x)

)]
. (3)

/ optimization problem too hard

Boosting p.18

Gradient boosting

The general idea :

I We want to train incrementally an ensemble whose aggregate

at previous step is f
(m)
ens

I Let’s do something sub-optimal but workable :

f
(m+1)
ens = f

(m)
ens − γm × ∇f |f=f

(m)
ens

Ex ,y [L (y , f (x))] . (4)

, gradient descent, yes we can !
This gradient step will improve things because we directly

differentiate the loss.

Boosting p.19

Gradient boosting

I Denote gradient as gm = ∇f |f=f
(m)
ens

Ex ,y [L (y , f (x))].

I gm is actually a function because this is a functional
derivative !

I It can be proved that the gradient is the following conditional
expectation

gm (x) = Ey |x

∂L
(
y , f

(m)
ens (x)

)
∂f

(m)
ens (x)

 (5)

I / We only know this function at points x belonging to Dtrain.

I → Approximate gm by regressing it with a function chosen
from H !

Boosting p.20

Gradient boosting

I The gradient step size γm is chosen as

γm = arg min
γ

ntrain∑
i=1

L
(
y (i), f

(m)
ens

(
x(i)
)
− γĝm

(
x(i)
))

(6)

Best γ w.r.t. the empirical risk / train error.

I Gradient boosting in practice → specify L and H.

Boosting p.21

Gradient boosting

I Regression task and loss is square loss :

L (y , f (x)) =
1

2
(y − f (x))2 ,

hence
∂L
(
y , f

(m)
ens (x)

)
∂f

(m)
ens (x)

= f (x)− y .

I H = trees with a given max depth.

I Training algorithm = CART.

Boosting p.22

Gradient boosting

Our data Dtrain :
x1 x2 x3 y

height age gender weight
1.8 22 m 70
1.7 28 m 70

1.65 25 f 55
1.77 32 f 68
1.92 22 m 72
1.85 19 m 93

I Initialize : f
(0)
ens (x) = 71.33

(average of y (i) in the training set)

Boosting p.23

Gradient boosting

Our data Dtrain :
x1 x2 x3 y ri

height age gender weight resid.
1.8 22 m 70 −1.33
1.7 28 m 70 −1.33

1.65 25 f 55 −16.33
1.77 32 f 68 −3.33
1.92 22 m 72 0.66
1.85 19 m 93 21.66

I step m = 0

I Compute
pseudo-residuals = neg.
gradient

ri = −
∂L
(
y , f

(m)
ens (x)

)
∂f

(m)
ens (x)

= f
(m)
ens (x)− y

I Train ĝm to regress −ri
from inputs using CART.

Boosting p.24

Gradient boosting

I Suppose max depth = 2, and CART yields

Gender = f

Age > 30 Height > 1.81

0.66 ; 21.66 -1.33 ; -1.33-3.33 -16.33

Y

Y Y

N

N N

ave = 11.16 ave = -1.33

}
<latexit sha1_base64="BkcOr1HmEWByekmIapjXL3RppGY=">AAAC2XicjVHLSsNAFD2Nr1pf9bFzEyyCq5KqoMuiG5cV7APaUpLptB1MkzCZCLW4cCdu/QG3+kPiH+hfeGdMQS2iE5KcOfeeM3Pv9SJfxMpxXjPWzOzc/EJ2Mbe0vLK6ll/fqMVhIhmvstAPZcNzY+6LgFeVUD5vRJK7Q8/nde/yVMfrV1zGIgwu1Cji7aHbD0RPMFcR1clvtXzeU0W7JUV/oFrSky7jnXzBKTpm2dOglIIC0lUJ8y9ooYsQDAmG4AigCPtwEdPTRAkOIuLaGBMnCQkT57hBjrQJZXHKcIm9pG+fds2UDWivPWOjZnSKT68kpY1d0oSUJwnr02wTT4yzZn/zHhtPfbcR/b3Ua0iswoDYv3STzP/qdC0KPRybGgTVFBlGV8dSl8R0Rd/c/lKVIoeIOI27FJeEmVFO+mwbTWxq1711TfzNZGpW71mam+Bd35IGXPo5zmlQ2y+WDorO+WGhfJKOOott7GCP5nmEMs5QQZW8r/GIJzxbTevWurPuP1OtTKrZxLdlPXwABXyXkA==</latexit>

}
<latexit sha1_base64="BkcOr1HmEWByekmIapjXL3RppGY=">AAAC2XicjVHLSsNAFD2Nr1pf9bFzEyyCq5KqoMuiG5cV7APaUpLptB1MkzCZCLW4cCdu/QG3+kPiH+hfeGdMQS2iE5KcOfeeM3Pv9SJfxMpxXjPWzOzc/EJ2Mbe0vLK6ll/fqMVhIhmvstAPZcNzY+6LgFeVUD5vRJK7Q8/nde/yVMfrV1zGIgwu1Cji7aHbD0RPMFcR1clvtXzeU0W7JUV/oFrSky7jnXzBKTpm2dOglIIC0lUJ8y9ooYsQDAmG4AigCPtwEdPTRAkOIuLaGBMnCQkT57hBjrQJZXHKcIm9pG+fds2UDWivPWOjZnSKT68kpY1d0oSUJwnr02wTT4yzZn/zHhtPfbcR/b3Ua0iswoDYv3STzP/qdC0KPRybGgTVFBlGV8dSl8R0Rd/c/lKVIoeIOI27FJeEmVFO+mwbTWxq1711TfzNZGpW71mam+Bd35IGXPo5zmlQ2y+WDorO+WGhfJKOOott7GCP5nmEMs5QQZW8r/GIJzxbTevWurPuP1OtTKrZxLdlPXwABXyXkA==</latexit>

Boosting p.25

Gradient boosting

I Obtain new ensemble as

f
(m+1)
ens = f

(m)
ens − γmĝm

I Take m = 0, i = 3 and suppose γ0 = 1

f
(1)
ens

(
x(3)
)

= f
(0)
ens

(
x(3)
)
− r3,

= 71.33− 16.33

= 55

I Perfect match ! but this is overfitting → need to regularize
by using a learning rate η < 1 !

Boosting p.26

Gradient boosting

I Question : what is the justification behind averages for leafs
with multiple outputs ?

I Define input space regions that are mapped by the newly
trained tree ĝm to a single leaf as (Rj)

Jleaf
j=1 (terminal regions).

I Solving arg min
γ

∑
x(i)∈Rj

L
(
y (i), f

(m)
ens

(
x(i)
)

+ γ
)

gives those

averages.

I Slightly different from the theory which involves the global
minimization (6) to find γm.

Boosting p.27

Gradient boosting

I Implementation : XGBoost.

I Open source software library heavily relying on gradient
boosted trees + few tricks.

I Available in Python, R and Julia.

I A popular resource in ML competition... (XGBoost +
Centralien = ♥).

