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Boosting b2

boosted weak learner

Goal : Build incrementally an ensemble so that new coming
classifiers fix misclassification errors of the previous ones.
Turn a weak classifier into a strong ensemble.

» Use bagging in case of overfitting (H is big — high variance
in trained predictors).

» Use boosting in case of underfitting (# is small — low
variance in trained predictors but high bias).
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boosted weak learner

Remember the bad tree?

» This is a weak learner that underfits data...

» But achieves ~ 78% accuracy which is a lot better than
random guess.



Boosting

boosted weak learner

Question : Can a set of weak learners create a single strong
learner 7 [Kearns 88]

Answer : Yes [Schapire 90] (regardless of how is trained the weak
learner)

@ Train a "bad tree” f; on D) CD.

@ Train a "bad tree” f on DB C D\ DV s.t. half of the
points in D) are misclassified by f.

© Train a "bad tree” f3 on DB C D\ DI+ st it contains
data points for which f; and f, disagree.

Then, the majority vote ensemble of (f1, 2, 3) has a smaller risk
than f; (with high prob.).

The Strength of Weak Learnability, Schapire 1990.

p.4
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boosted weak learner
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Boosting
AdaBoost

Sequentially train weak classifiers for a binary task y € {—1;+1} :

@ Train weak classifier f,, on the weighted training set
Dirain X {Wr(‘nl)7 ) Wr(nn)}-

@ Evaluate the classification uncertainty on each data point and
update weights accordingly.

© Update classifier mixing coefficients ap,

M
Finally, return fe,s = sign ( > amfm) )
m=1

s(x) = Zn’\le amfm (x) € R is a score whereas each f, (x) € Cis a
class label.

p.6
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AdaBoost

One loss to rule them all!
» In classification, the standard loss function is the 0-1 loss.

» Boosting aims at minimizing a weighted 0-1 loss over the
training set :

=38 (11,0 (1 (<))

» The boosted ensemble, however, minimizes the exponential
loss :

n M
Jens = 2@@ <_y(i); Z ('\mfm (X(I))> .

m=1
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AdaBoost

Question : does an exponential loss make sense ?

exp(—ys)

{sign(ys) < 0} pasitive loss when prediction is correct ...
1.0 4 ——————————
gn(y -

0.5 -~

0.04

» Exponential loss = surrogate of the 0-1 loss
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AdaBoost

Proof that optimizing Jo,s w.r.t. to f,, = optimizing Jn,.

» We define weights as

n 1 m—1 ' 1 ' .
Jens = ;exp <_y(l)2 afi (X(I))> X exp (_2(\my(l)fm <X(I)>) .

k=1

()

=wp
» We deduce weight update :

0 _ () 1 5 ]
Wp'i1 = Wm' exp <—2mmy( )fm <x( )>> .

» Depending on the correctness of the prediction, the weight
grows or decreases.
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AdaBoost

Proof that optimizing Jo,s w.r.t. to f,, = optimizing Jn,.

Let's use the following decomposition of the ensemble loss :
» Denote M the set of misclassified points by fp,.
» Denote T the set of correctly classified points by fy,.

» We have

Jens = Z Wm + e{‘éﬂ Z Wr(T;.)v

€T ieM

n n
—Om [ am —Om [
=e 2 E W,(,;)+<e2—e2>g W,(7;)
i=1 i=1

x T {fm (x(f)) £ y(")} .
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AdaBoost

Next problem : we need an incremental rule for f,, and ap,.

» Minimizing Jens wrt mixing coefficients gives




Boosting
AdaBoost

» If ¢, = 0.5 then «p, = 0, the classifier is discarded from the

ensemble.
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Boosting
AdaBoost

Final problem : how to minimize a weighted loss J, ?

First possibility : weak learner
is compatible.

ex : logistic regression

To learn, we differentiate the
cross-entropy loss w.r.t. the
model parameters.

Differentiating the weighted
version is no harder.

Second possibility : weak learner is
not compatible.

Sample a bootstrap sample from D
where each data point (x(’),y(’)) is
selected with probability

g
pi=—F~.
> wiy
Train your new base learner on this
bootstrap sample.

Remark : in both cases we do not really minimize J,, which relies on the

0-1 loss.
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AdaBoost
Illustration : boosted trees.
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AdaBoost : pros and cons

Theoretical guarantees

» Bound on the ensemble empirical risk éns
n _ M 1
€ens = Z ]ly(i) (fens (XI)) <e ml
i=1

» PAC-bound on the risk... but it increases w.r.t. M|

» PAC-bound on the margin (regardless of M).

— More on this : The Boosting Approach to Machine Learning An
Overview, Schapire 2001.
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AdaBoost : pros and cons

Limitations

» Outliers — much slower convergence.

> No probabilistic embedding.

» No obvious way to regularize.

» Limited interpretability.
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Gradient boosting

The general idea :

» We want to train incrementally an ensemble whose aggregate
at previous step is g(n’;’)

» The best additive corrective learner in H that we can add is
given by

D = ) e min By | (1,6 0+ h(0)] ()

® optimization problem too hard
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Gradient boosting

The general idea :

» We want to train incrementally an ensemble whose aggregate
at previous step is g(n’;’)

» Let's do something sub-optimal but workable :

et = K0 — v X Vil By [Ly, F (). (4)

© gradient descent, yes we can !
This gradient step will improve things because we directly
differentiate the loss.
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Gradient boosting

>

>

v

v

Denote gradient as gm = V| ._m Exy [L(y, f (x))].

gm is actually a function because this is a functional
derivative !

It can be proved that the gradient is the following conditional
expectation

oL ()/a e(ns) (X)>
O (%)

8m (X) = IE:y|x (5)

® We only know this function at points x belonging to Diain.

— Approximate g, by regressing it with a function chosen
from H !
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Gradient boosting

» The gradient step size v, is chosen as

Mtrain

m =argmin Y L (yD, &2 (x0) —1gm (x7))  (6)
v i=1
Best v w.r.t. the empirical risk / train error.

» Gradient boosting in practice — specify L and H.



Boosting p21
Gradient boosting

> Regression task and loss is square loss :

L(y,f(x) =5y —f(x)?,

oL (y, %2 ()
hence o) =1f(x)—y.
Ofens’ (x)

» H = trees with a given max depth.

» Training algorithm = CART.
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Gradient boosting
Our data Diain :
X1 X2 X3 y
height age gender | weight
1.8 22 m 70
1.7 28 m 70 » Initialize : 12(,?5) (x) =71.33
165 25 f 55 (average of y(/) in the training set)
1.77 32 f 68
1.92 22 m 72
1.85 19 m 93

p.22



Boosting

Gradient boosting

Our data Diyain :

X1 X2 X3 y ri
height age gender | weight | resid.

1.8 22 m 70 -1.33

1.7 28 m 70 —-1.33
1.65 25 f 55 —16.33
1.77 32 f 68 -3.33
1.92 22 m 72 0.66
1.85 19 m 93 21.66

» step m=20

» Compute
pseudo-residuals = neg.
gradient

oL (y, £m) (X))
o™ (x)
=™ (x) - y

» Train g, to regress —r;
from inputs using CART.
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Gradient boosting

» Suppose max depth = 2, and CART yields

Gender =
Age > 30 Height > 1.81
-3.33 -16.33 0.66 ; 21.66 -1.33;-1.33
— —

ave =11.16 ave = -1.33
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Gradient boosting

» Obtain new ensemble as

f(m+1) _ f(m)

ens ens” — Ym8m

» Take m=20, i = 3 and suppose 7 =1

3 (x@) = 2 () - s,

=71.33-16.33
=55
» Perfect match! .... but this is overfitting — need to regularize

by using a learning rate n < 1!
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Gradient boosting

» Question : what is the justification behind averages for leafs
with multiple outputs?

» Define input space regions that are mapped by the newly
trained tree g, to a single leaf as (R; )JJ'eaf (terminal regions).

» Solving arg min Y. DeR; L ( (), @(n':) (x(i)) + 7) gives those

averages.

» Slightly different from the theory which involves the global
minimization (6) to find yp,.
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Gradient boosting

» Implementation : XGBoost.

» Open source software library heavily relying on gradient
boosted trees + few tricks.

» Available in Python, R and Julia.

» A popular resource in ML competition... (XGBoost +
Centralien = Q).



