
Ensemble Learning - 2
Beyond Linear Aggregation

John Klein

Iterated Aggregation p.2

Preference aggregation

Goal : Resolve ties on super-majority / approval votes
Use case : Recommender system aggregation

f1 (x) =

1 A

2 C

3 B

f2 (x) =

1 C

2 B

3 A

fens (x) =

1 C

2 A

3 B

Iterated Aggregation p.3

Preference aggregation

Instant Runoff Operator (IRO) :

Return this candidate
<latexit sha1_base64="3lzfyBOlUvl0aDeOkWkMfYU5aIY=">AAAC5nicjVG7TsMwFD2Ed3kFGFkCFRJTlcIAYwULIyAKSC1CjmNai9SJHAepQsxsbIiVH2CFT0H8AfwF1yZIPITAUZLjc+859r03yhKZmzB8HvAGh4ZHRsfGKxOTU9Mz/uzcQZ4WmosmT5NUH0UsF4lUommkScRRpgXrRYk4jM62bPzwXOhcpmrf9DNx3GMdJU8lZ4aoE3+xzYUyQkvVqewJU2gVmK7MA85ULGNmROXEr4a10K3gJ6iXoIpy7aT+E9qIkYKjQA8CCoZwAoacnhbqCJERd4wL4jQh6eICl6iQtqAsQRmM2DP6dmjXKllFe+uZOzWnUxJ6NSkDLJMmpTxN2J4WuHjhnC37m/eF87R369M/Kr16xBp0if1L95H5X52txeAUG64GSTVljrHV8dKlcF2xNw8+VWXIISPO4pjimjB3yo8+B06Tu9ptb5mLv7hMy9o9L3MLvNpb0oDr38f5Exys1uprtXB3tdrYLEc9hgUsYYXmuY4GtrGDJnlf4R4PePS63rV3492+p3oDpWYeX5Z39waL2py6</latexit>

Iterated Aggregation p.4

Preference aggregation

Example

Fusion of recommender systems

I Suppose we trained M recommender systems each returning a
list of #C=4 objects.

I Each list is ordered from most preferred to least preferred.

I Let us also assume that they delivered only 4 different kinds
of ballots.

I The table in the next slide gives the advocacies along with
their occurrences.

I Using the majority operator, site web A would win.

Iterated Aggregation p.5

Preference aggregation

Example

Ballot table for example
occurrences 42 26 15 17

ballot A B C D
B C D C
C D B B
D A A A

Iterated Aggregation p.6

Preference aggregation

Pairwise Rank Operator (PRO) :

Build Matrix V s.t.
Vij = nbr of times
ci is preferred to cj

Normalize
V ← V

M

Build Matrix W

Wij =

{
1 if Vij >

1
2

0 otherwise

Find class(es) with
largest nbr of wins
A = arg max

ci∈C

∑
j

Wij

#A = 1

Return A

Erase weakest
win

NO

YES

Iterated Aggregation p.7

Preference aggregation

Pairwise Rank Operator (PRO) :

I ”Weakest” win : find arg minVij among those (i , j)
corresponding to a win (Wij = 1).

I Let us run PRO on the recommender system fusion example.

I Neither PRO or IRO return a full list of preferred candidates.
To obtain the list, eliminate the returned class from the
ballots and re-run the algorithm.

Non-linear Aggregation p.8

Regression

Generalized averages :

I F-means are a class of generalized averaging obtained thanks
to a bijective mapping g : Y −→ R.

fens (x) = g−1

(
1

M

M∑

m=1

g (fm (x))

)
.

I Typical choices are

g = log : geometric mean,
g = 1/x : harmonic mean.

Non-linear Aggregation p.9

Regression

Geometric mean :

fens (x) =

(
M∏

m=1

fm (x)

) 1
M

.

I Useful when aggregated values are normalized w.r.t some
reference value (ratios or percentages).

Example

An orange tree produced in the past years 100, 180, 210 and 300
oranges. The corresponding growth production rates are thus 1.8,
1.17 and 1.44. The arithmetic mean of these rates is 1.47 whereas
the geometric mean is 1.44. Starting with 100 oranges and
applying a growth rate of 1.47 gives 314.47 oranges while using
1.44 as growth rate gives exactly 300 oranges.

Non-linear Aggregation p.10

Regression

Harmonic mean :

fens (x) =
M

∑M
m=1

1
fm(x)

.

I Useful when aggregated values are unnormalized growth rates.

I Harmonic mean < Geometric mean < Arithmetic mean.

Example

A car is moving by a 100m at 50km/h and by another 100m at
70km/h. The car displacement duration is 7.2 for the first move
followed by 5.14s for the second move which makes 12.34s in total.

Arithmetic mean of (50; 70) is 60. The displacement duration
obtained by moving at 60km/h on 200m is 12s.

Geometric mean of (50; 70) is 59.16. The displacement duration
obtained by moving at 59.16km/h on 200m is 12.17s.

Harmonic mean of (50; 70) is 58.33. The displacement duration
obtained by moving at 58.33km/h on 200m is exactly 12.34s.

Non-linear Aggregation p.11

Classification : combining predictions that are class label conditional probabilities

Aggregation of probability distributions : desirable properties

I Let pens denote the aggregated distribution.

I Axiom (i) : weak set wise function property (WSFP)

Definition (WSFP)

For all subset A ⊆ C,

pens (A) = g (A) (p1 (A) , . . . , pM (A)) , (1)

for some function g (A) : [0; 1]M → [0; 1].

I Interpretation : the aggregated chances of event A are
depending solely on the input probabilities on the same event
A.

Non-linear Aggregation p.12

Classification : combining predictions that are class label conditional probabilities

Aggregation of probability distributions : desirable properties

I Axiom (ii) : strong set wise function property (SSFP)

Definition (SSFP)

For all subset A ⊆ X ,

pens (A) = g (p1 (A) , . . . , pM (A)) , (2)

for some function g : [0; 1]M → [0; 1].

I Interpretation : same as before but the combination rule is the
same for each event otherwise relabeling the elements of C
would impact the fusion.

Non-linear Aggregation p.13

Classification : combining predictions that are class label conditional probabilities

Aggregation of probability distributions : desirable properties

I Axiom (iii) : unanimity (or idempotence)

Definition (Unanimity)

If pm = p0 for all m, then pens = p0.

I Interpretation : if the sources are unanimous, then the
aggregate distribution is a copy of the input ones.

Proposition

If #C ≥ 3, a probability distribution aggregation operator
satisfying SSFP and unanimity is an LOP (convex combination).

Non-linear Aggregation p.14

Classification : combining predictions that are class label conditional probabilities

Aggregation of probability distributions : desirable properties

I Axiom (iv) : independence preservation (IP)

Definition (IP)

For any two subsets A and B of C s.t.
pm (A ∩ B) = pm (A)× pm (B) ∀m, then
pens (A ∩ B) = pens (A)× pens (B)

I Interpretation : when input distributions are unanimously
independent w.r.t. a pair of events, this is also true for the
aggregated distribution.

I No LOP operator achieves IP except if wm = 1 for some m
(dictatorship or selection).

Non-linear Aggregation p.15

Classification : combining predictions that are class label conditional probabilities

Aggregation of probability distributions : desirable properties

I In the Bayesian setting, the posterior p′ is an update of the
prior p through the likelihood function L :
p′ (x) ∝ L (D) p (x).

I Axiom (v) : Bayesian externality (EB)

Definition (EB)

Let (p′)ens denote the combination of the updated distribution p′m
using likelihood function L and (pens)

′ denote the updated
combination of the distributions pm using the same likelihood
function. Then

(p′)ens = (pens)
′.

I Interpretation : Bayesian update and fusion commute.

I The time at which some information arrives does not matter.

Non-linear Aggregation p.16

Classification : combining predictions that are class label conditional probabilities

Aggregation of probability distributions : desirable properties

Proposition

If a probability distribution fusion operator writes

pens =
1

Z

M∏

m=1

(pm)wm ,

where coefficients wm are non-negative and sum to one :∑M
m=1 wm = 1 and Z is a normalization constant, then it achieves

unanimity and EB.

I These operators are known as logarithmic opinion pool
(LogOP) operators.

I LogOP = weighted geometric mean !

Non-linear Aggregation p.17

Classification : combining predictions that are class label conditional probabilities

Aggregation of probability distributions : desirable properties

I Another nice property of LogOPs :

Proposition

An aggregated distribution returned by a LogOP is the solution of
the minimization problem :

arg min
p

M∑

m=1

wmdKL (p, pm) ,

where dKL is the Kullback-Leibler divergence.

I LogOPs are ”barycenters” in the KL divergence sense.

Non-linear Aggregation p.18

Classification : combining predictions that are class label conditional probabilities

Aggregation of probability distributions : probabilistic calculus

I Each distribution pm can be interpreted as pY (.|x, zm)

I Zm is a random variable attached to the mth predictor, ex :
Zm = D(m), private dataset of the mth learner.

I For simplicity, we assume M = 2.

I From Bayesian standpoint, we want to infer
pY
(
.|x,D(1),D(2)

)
.

I Let wm = p
(
D(m)|x

)
.

Non-linear Aggregation p.19

Classification : combining predictions that are class label conditional probabilities

Aggregation of probability distributions : probabilistic calculus

I Applying Bayes, we can write

p
(
y |x,D(1),D(2)

)
∝ p

(
D(1),D(2)|y , x

)
× p0 (y |x) (3)

I Assuming conditional independence, we have

p
(
y |x,D(1),D(2)

)
∝ p

(
D(1)|y , x

)
× p

(
D(2)|y , x

)
× p0 (y |x)

(4)

I Applying Bayes again gives

p
(
y |x,D(1),D(2)

)
∝ p

(
y |D(1), x

)
w1

p0 (y |x)
× p

(
y |D(2), x

)
w2

p0 (y |x)
× p0 (y |x)

(5)

Non-linear Aggregation p.20

Classification : combining predictions that are class label conditional probabilities

Aggregation of probability distributions : probabilistic calculus

I This also writes

p
(
y |x,D(1),D(2)

)
∝ p

(
y |D(1), x

)
w1 × p

(
y |D(2), x

)
w2

p0 (y |x)
(6)

I p0 (y |x) is a prior 6= p (y |x).

I General case :

p
(
y |x,D(1), ..,D(M)

)
∝
∏M

m=1 p
(
y |D(m), x

)
wm

(p0 (y |x))M−1
. (7)

Non-linear Aggregation p.21

Classification : combining predictions that are class label conditional probabilities

Aggregation of probability distributions : when they are no longer
defined on the same σ-algebra.

I Suppose f1 is a trained logistic regressor to discriminate c1
from B1 = {c2, .., c`}

I The σ-algebra on which the distribution attached to f1 is
defined is : {∅, {c1} ,B1, C}.

I If each fm is a one-versus-all probabilistic classifier, their
distributions cannot be aggregated using the aforementioned
techniques.

I Generalized frameworks can help : imprecise probabilities,
belief functions/random sets.

Learning to Aggregate p.22

Classification

Stacking : Procedure

Learning to Aggregate p.23

Classification

Stacking : Procedure
Generate a new training set for a second-stage classifier.

Learning to Aggregate p.24

Classification

Stacking : Procedure
Train the second-stage classifier.

Learning to Aggregate p.25

Classification

Stacking : Procedure
Use it all.

Learning to Aggregate p.26

Classification

Stacking : Comments

I Stacking can be used for heterogeneous classifiers too.

I Need for validation data for second-stage training.

I Solution : repeat the procedure in a cross validation (CV)
fashion.

I Leave-one-out CV (LOOCV) : let f
(−i)
m denote the mth

predictor trained on the whole training set except data point
x(i), then in step 3, one needs to minimize

J (w) =
n∑

i=1

L

(
y (i), sgm

(
M∑

m=1

wmf
(−i)
m

(
x(i)
)))

.

Learning to Aggregate p.27

Classification

Any optimal solution ?

I We assume fm (x) ∈ C (predictions are class labels).

I Let c = [f1 (x) . . . fM (x)].

I Based on the sole information contained in vector c, and
under 0-1 loss, the optimal decision is

fens (x) = arg max
y

p (y |c (x)) .

I Can we infer the conditional distributions p (y |c (x)) ?

I Applying Bayes, we have p (y |c) ∝ p (c|y) p (y) .

I p (c|y) is a joint distribution whose marginals are multinomial.

I How many parameters do we have to learn ?

Learning to Aggregate p.28

Classification

Any optimal solution ?

I Not scalable : polynomial memory complexity w.r.t. #C and
exponential w.r.t. M !

I Conditional independence assumptions :

p (c|y) =
M∏

m=1

p (cm|y) .

I Linear memory complexity w.r.t. both #C and M.

I This is stacking, with Naive Bayes classifier as second-stage
classifier !

