Ensemble Learning - 1 Linear Aggregation

John Klein

Supervised Learning: the learning diagram

Hypothesis functions $h \in \mathcal{H}$

Ensemble Learning: the learning diagram

Hypothesis functions $h \in \mathcal{H}$

Ensemble Learning:

lacktriangle Notion of hypothesis set ${\mathcal H}$ of prediction functions

Ensemble Learning: the learning diagram

Ensemble Learning: 3 scenarios

► Aggregation : Alg. 2 after Alg. 1

▶ Hypothesis Blending : Alg. 1 & 2 at the same time

▶ Boosting: iterating Alg. 1, Alg. 2, Alg. 1, Alg. 2 ...

Ensemble Learning:

▶ No free lunch : higher learning capacity \rightarrow more parameters to learn!

Combining predictors:

• We want diversity in the $\hat{f}^{(i)}$:

Combining predictors

lacktriangle We don't want consanguinity in the $\hat{f}^{(i)}$:

Combining predictors

ightharpoonup We also don't want bad individual accuracy for the $\hat{f}^{(i)}$:

Decentralized learning

Goal: learn from several (remote and private) datasets

Goal: learn from inputs that are tuples of signals

- Cannot train a neural network on this pair of signals
- ▶ Need to (pre)train two networks for each type of signal and aggregate them.

Classification: combining predictions that are class labels

Voting systems

Definition

A **voting system** is a fusion method applicable to any predictions. A voting system is a made of :

- ▶ a ballot, which specifies the answer expected from a voter (= structure of the input space)
- ▶ a tallying algorithm, which specifies how votes are combined to produce election results (= aggregation rule).

Voting systems

- ▶ Ballot forms :
 - Plurality ballot : only one choice : $f_m(\mathbf{x}) \in \mathcal{C}$.
 - Approval ballot, several choices : $f_m(\mathbf{x}) \subset \mathcal{C}$.
 - Cumulative ballot, several points to distribute : $f_m(\mathbf{x})$ is a histogram on C.
 - Ranked ballot, a score is assigned to each candidate label : $f_m(\mathbf{x}) \in \mathbb{R}^M$.

Classification : combining predictions that are class labels

Majority Vote ensemble

- \blacktriangleright Let f_{ens} denote the aggregated predictor.
- ► The aggregation rule reads

$$f_{\mathsf{ens}}(\mathbf{x}) = \underset{y \in \mathcal{C}}{\mathsf{arg\,max}} \ \sum_{m=1}^{M} \mathbb{1}_{y} \left(f_{m}(\mathbf{x}) \right)$$

Super-Majority Vote ensemble

- ► Compute $s = \underset{y \in \mathcal{C}}{\operatorname{arg max}} \sum_{m=1}^{M} \mathbb{1}_{y} \left(f_{m} \left(\mathbf{x} \right) \right)$
- ▶ If $\sum_{m=1}^{M} \mathbb{1}_{s} (f_{m}(\mathbf{x})) > \text{threshold then return } f_{\text{ens}}(\mathbf{x}) = s$
- ▶ Else ... do sth about it

Vote based rules : good way to aggregate?

▶ Suppose $C = \{0; 1\}$.

Theorem

Condorcet jury's theorem. Suppose M is odd : M = 2R + 1. Suppose $\theta = \mathbb{P}(f_m(\mathbf{x}) = y)$ for any m and any pair (\mathbf{x}, y) . Let $p_M = \mathbb{P}(f_{ens}(\mathbf{x}) = y)$ where f_{ens} is the majority vote ensemble.

The following properties hold:

(i) If
$$\theta > \frac{1}{2}$$
 then $p_M \xrightarrow[M \to +\infty]{} 1$.

(ii) If
$$\theta < \frac{1}{2}$$
 then $p_M \xrightarrow[M \to +\infty]{} 0$.

(iii) If
$$\theta = \frac{1}{2}$$
 then $p_M = \frac{1}{2}$.

Vote based rules : good way to aggregate?

- ▶ Suppose $\{1_y(f_m(\mathbf{x}))\}_{m=1}^M$ is an i.i.d. sample drawn from a Bernoulli random variable Z on the probability space made of two events : $\{y=f_m(\mathbf{x})\}$ and $\{y\neq f_m(\mathbf{x})\}$.
- $ightharpoonup \mathbb{E}\left[\mathbf{Z}\right] = \theta.$
- ▶ The law of large numbers implies that the proportion of classifiers choosing the correct label y tends to θ as M increases.
- ▶ Now if $\theta > \frac{1}{2}$, then y has a majority!
- ▶ But wait .. does this apply in practice?

Weighted Vote ensemble

- ightharpoonup Ranked ballot : each classifier is assigned a weight w_m
- ► The aggregation rule reads

$$f_{\text{ens}}(\mathbf{x}) = \underset{y \in \mathcal{C}}{\operatorname{arg max}} \sum_{m=1}^{M} w_{m} \mathbb{1}_{y} (f_{m}(\mathbf{x})).$$

▶ Principled way to set the $(w_m)_{m=1}^M$?

Weighted Vote ensemble

Step 1

Classification: combining predictions that are class labels

Weighted Vote ensemble

Weighted Vote ensemble

- ▶ The error rate (risk) is $e_m = \mathbb{E}_{\mathbf{x}, y \sim p_{X,Y}} [L_{0-1}(y, f_m(\mathbf{x}))].$
- We can set $w_m = 1 e_m$.
- ▶ Step 3 : return prediction $\underset{y \in \mathcal{C}}{\text{arg max}} \sum_{m=1}^{M} w_m \mathbb{1}_y \left(f_m \left(\mathbf{x} \right) \right)$ for any unseen example \mathbf{x} .

Weighted Vote ensemble is intuitive but is it optimal?

Exponentially Weights achieves a form of optimality.

- ► Empirical risk $\hat{e}_m = \frac{1}{n_{\text{val}}} \sum_{(\mathbf{x}, y) \in \mathcal{D}_{\text{val}}} L_{0-1}(y, f_m(\mathbf{x})).$
- ▶ In this setting, we set $w_m = \frac{\exp(-\eta \hat{e}_m)}{\sum_{m'} \exp(-\eta \hat{e}_{m'})}$.
- \hat{e}_{ens} is the ensemble empirical risk.
- ▶ $\mathbf{w} = [w_1..w_M]$ denotes the vector of convex weights.
- ► EWV solves $\underset{\mathbf{w}}{\operatorname{arg min}} \sum_{m=1}^{M} w_{m} \hat{e}_{m} + \operatorname{pen}_{\mathsf{KL}}(\mathbf{w})$
- ▶ For some convex loss, $\sum_{m=1}^{M} w_m \hat{e}_m \ge \hat{e}_{ens}(\mathbf{w})$.

Goal: use SVMs in multi-class problems

Aggregation: when we have to Large scale problems: large number of class labels

Goal: use SVMs in multi-class problems

Approval Majority Vote ensemble

- ▶ So here $A_m = f_m(\mathbf{x})$ is a **subset** of \mathcal{C} .
- ▶ The aggregation rule reads

$$f_{\mathsf{ens}}(\mathbf{x}) = \underset{y \in \mathcal{C}}{\mathsf{arg\,max}} \sum_{m=1}^{M} \mathbb{1}_{A_m}(y)$$

- ► Weighted versions also welcome!
- ▶ Remark : for SVMs, weights can be drawn from margins.

Classification : combining class label scores

- Many classifiers provide more information than their predictions: a vector of class label scores.
- ▶ When scores are unnormalized, we do not have supervision.
- ▶ When scores are probability distributions, we know that the correct prediction is δ_y !

Soft Majority Vote ensemble

- So here $p_m = f_m(\mathbf{x})$ is a **probability** conditional distribution : $p_m(y) = \mathbb{P}(y|\mathbf{x}, h_m)$.
- ► The aggregation rule reads

$$f_{\mathsf{ens}}(\mathbf{x}) = \underset{y \in \mathcal{C}}{\mathsf{arg\,max}} \ \sum_{m=1}^{M} p_m(y)$$

▶ Linear Opinion Pools = weighted version with convex coefficients : $\sum_m w_m = 1$ and $w_m \ge 0, \forall m$ ⇒ the convex combination of probability distributions remains a probability distribution.

Average

- ▶ So here $f_m(\mathbf{x}) \in \mathcal{Y} = \mathbb{R}$.
- ► The output space is a vector space.
- Linear aggregation is basically an average prediction :

$$f_{\mathsf{ens}}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} f_m(\mathbf{x})$$

- ▶ When C contains quantized numbers from Y, averages may be used also in classification with the help of a rounding function.
- ► Score based aggregation for classification amounts to aggregation for regression.

Regression : combining predictions in $\mathcal{Y} = \mathbb{R}$

Bagging

- Generate a dataset \mathcal{D}_{boot} from \mathcal{D}_{train} (unif. sampling with replacement).
- 2 Run your training algorithm on \mathcal{D}_{boot} .
- 4 After M such trainings, combine using majority voting (classifiers) or average (regressors).

Regression : combining predictions in $\mathcal{Y} = \mathbb{R}$

Bagging

► Suppose one fits a 20 degree polynomial on this noisy data :

Aggregation : when we want to

Regression : combining predictions in $\mathcal{Y}=\mathbb{R}$

Bagging

► Bagging will help a bit to mitigate overfitting

Bagging

▶ Let ϵ_m denote the (signed) error function between the true function f_0 and one of my predictors f_m that was trained on a bootstrap sample (no noise) :

$$\epsilon_m(\mathbf{x}) = f_m(\mathbf{x}) - f_0(\mathbf{x}).$$

- ► For regression problems, the usual loss function is the **quadratic** one.
- ▶ The expected loss for the predictor $f_m(\mathbf{x})$ is thus :

$$e_{m} = \mathbb{E}_{X}\left[\left(f_{m}\left(\mathbf{x}\right) - f_{0}\left(\mathbf{x}\right)\right)^{2}\right] = \mathbb{E}_{X}\left[\epsilon_{m}\left(\mathbf{x}\right)^{2}\right]$$

Regression : combining predictions in $\mathcal{Y} = \mathbb{R}$

Bagging

Now, the expected loss for the bagging ensemble writes :

$$e_{\text{ens}} = \mathbb{E}_{X} \left[\left(\frac{1}{M} \sum_{m=1}^{M} f_{m}(\mathbf{x}) - f_{0}(\mathbf{x}) \right)^{2} \right] = \mathbb{E}_{X} \left[\left(\frac{1}{M} \sum_{m=1}^{M} \epsilon_{m}(\mathbf{x}) \right)^{2} \right]$$

If $\mathbb{E}_{X}\left[\stackrel{\epsilon}{\epsilon_{m}} \right] \leq C \; (\forall m)$ and $\mathbb{E}_{X}\left[\stackrel{\epsilon}{\epsilon_{m}} \stackrel{\epsilon}{\epsilon_{m'}} \right] = 0 \; (\forall m \neq m')$, then

$$e_{\mathrm{ens}} = \frac{1}{M} \times e_{\mathrm{ave}} \quad \text{with} \quad e_{\mathrm{ave}} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{X} \left[\epsilon_{m}^{2} \right] = \frac{1}{M} \sum_{m=1}^{m} e_{m}$$

→ reduced error!

Random Subspaces

- ► Same idea as bagging, but instead of choosing at random examples, one choses at random features!
- ► Random draws are also with replacement, so some base learners will "focus" on some features.
- ▶ The random subspace method is instrumental for **fat** data $(len(\mathbf{x}) > n)$.
- ► Random forest = Decisions Tree + Bagging + Random Subspace.