
From relations between sets to relations between
belief functions
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Abstract. In uncertainty theories, a common problem is to define how
we can extend relations between sets (e.g., inclusion, ranking, consis-
tency, . . . ) to corresponding notions between uncertainty representations.
Such definitions can then be used to perform the same operations as those
that are done for sets: measuring information content, ordering alterna-
tives or checking consistency, to name a few. In this paper, we propose a
general way to extend set relations to belief functions, using constrained
stochastic matrices to identify those belief functions in relation. We then
study some properties of our proposal, as well as its relations with exist-
ing works focusing on peculiar relations.
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1 Introduction

One can define many relations between two (or more) subsets A,B of some
finite set X, i.e. between elements of some boolean algebra

(
2X ,∩,∪, .C

)
. Such

relations can check whether the sets are consistent (A ∩ B 6= ∅); whether one
set is more informative than another, or imply one another (A ⊆ B); when the
space on which they are defined is ordered, whether one set is “higher” than
another (A ≺ B ); etc. These relations can then be related to practical problems
such as restoring consistency or ranking alternatives.

To address the same questions in those uncertainty theories that formally
generalize set theory (based, e.g., on possibility distributions, belief functions
or sets of probabilities), it is desirable to carry over relations between sets to
uncertainty representations. Given the higher expressiveness of such theories,
the problem is ill-posed in the sense that there is not a unique way to do so. We
can cite as a typical example the notion of inclusion between belief functions,
that has many definitions [3]. Yet, such works usually focus on extending one
particular relation in meaningful ways.
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In this paper, we propose a simple way to extend any set relation to an
equivalent relation between belief functions, in the sense that the relation is
exactly recovered when considering categorical belief functions (i.e., belief func-
tions reduced to one focal element). Basically, we require that for a pair of belief
functions to be in relation, there must exist at least one stochastic matrix such
that one of these belief functions is obtained as the dot product of the matrix
with the other belief function. Additionally, the matrix is constrained to have
non-null entries on pairs of focal sets satisfying the relation to extend.

We develop and study the properties of our proposal in Section 2, in which we
also include necessary reminders. We then show in Section 3 how this proposal
is linked to previously proposed relations between belief functions, as well as to
other related results. We will focus, in particular, on the notions of information
specificity, of consistency, and of ranking. Finally, we formalize in Section 4
how we can say whether a relation is preserved through functional mapping of
a variable to another one, and provide some results about the inclusion and
ranking cases.

2 Main proposal

2.1 Definitions

A belief function on a finite space X = {x1, . . . , xK} is in one-to-one correspon-
dence with a mass function mi : 2X → [0, 1] that satisfies

∑
A⊆X mi(A) = 1.

From such a mass function, the belief and plausibility of an event A respectively
read

Beli(A) =
∑
E⊆A

mi(E) and Pli(A) =
∑

E∩A6=∅

mi(E).

If mi(∅) = 0, they can be interpreted as bounds of the probability P (A) of A,
inducing the probability set Pi = {P : Beli(A) ≤ P (A) ≤ Pli(A),∀A ⊆ X}.
We denote by BX the set of all belief functions on X. A particularly interesting
subclass of belief functions for this study will be the one of categorical ones. A
categorical mass function, denoted mB , is such that mB(B) = 1.

Let us now consider a relation such that for any ordered pair (A,B) ⊆ X2,
we will denote by ARB the truth of the relation between A and B (R is thus
a binary relation on 2X , or equivalently a subset of 2X × 2X). We then propose
the following simple definition to extend this relation to belief functions, i.e. into
a relation on BX :

Definition 1 Given two mass functions m1,m2 and a subset relation R, we say
that m1R̃m2 iff there is a (left)4 stochastic matrix SR such that ∀A,B ⊆ X

m1(A) =
∑
B⊆X

SR(A,B)m2(B) (1)

with S(A,B) > 0 ∧ m2 (B) > 0 =⇒ ARB. (2)

4 We use left-stochasticity only throughout the paper.
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It is easily checked that R̃ is a generalisation of R in the sense that

mAR̃mB ⇔ ARB, ∀A,B ⊆ X. (3)

Indeed, if ARB, we can choose SR (E,F ) = mA (E) and this matrix matches
the conditions of Definition 1, hence mAR̃mB . Also, there is only one relation R̃
on belief functions spanned by Definition 1 from a given set relation R. Suppose
two such belief function relations exist. If a matrix matching the conditions of
Definition 1 was found for the first one then the same matrix also works for the
other and the relations are equivalent. Similarly, if R̃ is spanned by Definition 1
from a given set relation R then it cannot be spanned by other set relations in
the same way. This is an immediate consequence of (3). Consequently, we will
use the same notation for a relation R on the subset or belief function side in
the remainder of the paper.

Definition 1 is inspired from previous works on specificity of belief func-
tions [3, 4, 6], as well as on recent proposals dealing with belief function ordering
[5]. As these works dealt with directional, or rather asymmetric relations, Def-
inition 1 is naturally asymmetric. However, Proposition 1 shows that it has a
somehow symmetric counterpart.

Proposition 1. Consider two mass functions m1,m2 and a belief function re-
lation R. Then the two following conditions are equivalent:

1. there is a stochastic matrix SR(A,B) such that

m1(A) =
∑
B⊆X

SR(A,B)m2(B),

with SR(A,B) > 0 ∧ m2 (B) > 0 =⇒ ARB.

2. there is a joint mass function m12 on 2X × 2X such that

m12(A,B) > 0 =⇒ ARB, (4)

m1(A) =
∑
B

m12(A,B), (5)

m2(B) =
∑
A

m12(A,B). (6)

Proof (Sketch). 1. =⇒ 2: from a matrix SR(A,B), we can deduce a joint
m12(A,B) = m2(B)SR(A,B) for any A,B which satisfies 2.

2. =⇒ 1: from a joint m12(A,B) satisfying (4)-(6), define SR(A,B) =
m12(A,B)/m2(B) if m2 (B) > 0, and with arbitrary values making it (left)-stochastic
if m2(B) = 0. This matrix satisfies 1.

This proposition shows, in particular, that any stochastic matrix SR can be
associated to a unique joint mass function m12, and vice-versa. Also note that,
using a transformation similar to the one used in the proof, we can build a
stochastic matrix S′R such that S′R(B,A) = m12(A,B)/m1(A) if m1 (A) > 0, and
be with arbitrary values else. S′ is such that m2(B) =

∑
A⊆X S′R(B,A)m1(A)

with S′R(A,B) > 0 and m1 (A) > 0 implying BRA, but not necessarily ARB.
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2.2 Relation properties preservation

We may now wonder how much of the initial relation R properties between
sets do still exist when extended in this way to belief functions. We will now
provide a series of results for common properties, either by providing proofs
or counter-examples. We will keep the proposition/proof format, to provide a
uniform presentation.

Proposition 2 (Preserved symmetry). If R is symmetric on sets, it is so
on belief functions:

m1Rm2 ≡ m2Rm1,∀m1,m2

Proof (Sketch). If R is symmetric, then S′R(A,B) as defined above is such that
S′R(A,B) > 0 and m1 (A) > 0 implies ARB.

Proposition 3 (Unpreserved antisymmetry). If R is antisymmetric on
sets, it is not necessarily so on belief functions, as we may have

m1Rm2 ∧m2Rm1 and m2 6= m1

Proof. Consider two mass functions that are positives only on subsets A,B,C
and such that

m1(A) = 0.3, m1(B) = 0.5, m1(C) = 0.2,

m2(A) = 0.4, m2(B) = 0.3, m2(C) = 0.3,

and the antisymmetric relation R on A,B,C summarised by the matrix

A B C[ ]A ARA ARB
B BRB BRC
C CRA CRC

We can then build two different joint mass functions such that m1Rm2 and
m2Rm1. ut

Proposition 4 (unpreserved asymmetry). If R is asymmetric on sets, it is
not necessarily so on belief functions, as we may have

m1Rm2 and m2Rm1

Proof. Simply consider two mass functions m1,m2 that are positive only on
subsets A,B,C,D,E and such that

m1(A) = 0.2, m1(B) = 0.3, m1(C) = 0.2, m1(D) = 0.1, m1(E) = 0.2,

m2(A) = 0.2, m2(B) = 0.1, m2(C) = 0.3, m2(D) = 0.3, m2(E) = 0.1
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as well as the asymmetric relation R on those subsets summarised by the matrix

A B C D E


A ARC ARD
B BRA BRE
C CRB CRD
D DRB DRE
E ERA ERC

.

We can then build two different joint mass functions such that m1Rm2 and
m2Rm1. ut

Proposition 5 (Preserved reflexivity). If R is reflexive on sets, it is so on
belief functions:

∀m, we have mRm

Proof (sketch). Just consider the joint mass function m12(A,A) = m(A) if m1 =
m2 = m.

Proposition 6 (Unpreserved irreflexivity). If R is irreflexive on sets, it is
not necessarily so on belief functions, as we may have mRm for some m ∈ B.

Proof. Consider the following mass function

m(A1) = 0.5,m(A2) = 0.5

and the relation R summarised in the following matrix

A1 A2[ ]
A1 A1RA2

A2 A2RA1

which is irreflexive. However, the joint m(A1, A2) = m(A2, A1) = 0.5 shows that
we have mRm, hence R may not be irreflexive for belief functions. ut

Proposition 7 (Preserved transitivity). If R is transitive on sets, it is so
on belief functions:

m1Rm2 ∧m2Rm3 =⇒ m1Rm3

Proof (sketch). Consider two stochastic matrices SR12 and SR23 satisfying Def-
inition 1, we can show that their product gives a matrix SR13 satisfying Defini-
tion 1.

Proposition 8 (Unpreserved completeness). If R is complete (or total) on
sets, it is not necessarily so on belief functions: for any two m1,m2 we may have
neither m1Rm2 nor m2Rm1.
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Proof. Consider the following mass functions

m1(A1) = 0.6,m1(A2) = 0.4 ; m2(B1) = m2(B2) = 0.5

and the relation R summarised in the following matrix

B1 B2[ ]
A1 A1RB1 B2RA1

A2 B1RA2 A2RB2

It is clear that any joint mass function respecting conditions (5)-(6) must
give a non-null mass to both (A1, B1) and (A1, B2), hence we have neither
m1Rm2 nor m2Rm1. ut

Table 1 summarises our obtained results. Note that some properties unpre-
served in general can nevertheless be preserved in peculiar cases (e.g., antisym-
metry of inclusion is preserved, as specialisation is antisymmetric). This opens
the way to various further questions (i.e., what happens when considering poset
structures).

R on 2X is → R on BX is R on 2X is → R on BX is

Symmetric Yes Irreflexive No
Antisymmetric No Transitive Yes

Asymmetric No Complete No
Reflexive Yes

Table 1. Summary of properties preservation

3 Related works

3.1 Inclusion and consistency

In the case where the relations are either inclusion or consistency, then we re-
trieve well-known results of the literature:

– in the case of inclusion we have ARB iff A ⊆ B, our definition is essentially
the same as specialisation [3], since checking m2 (B) > 0 is unnecessary in
this case.

– in the case of consistency, we have ARB iff A ∩ B 6= ∅, and one can see
that m1Rm2 iff there is a joint mass affecting positive mass to pairs of sets
having a non-empty intersection. This is equivalent to require P1 ∩ P2 6= ∅,
with Pi the probability set induced by mi [1].
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3.2 Rankings

When the space X is ordered (with xi ≤ xi+1) and possibly infinite, it makes
sense to consider relations of the kind “higher than” in order to compare sets.

There are many ways to rank two sets A,B, such as:

– Single-bound dominance, that can be declined itself into four notions:
• loose dominance: AR≤LD

B if minA ≤ maxB
• lower bound: AR≤LB

B if minA ≤ minB
• upper bound: AR≤UP

B if maxA ≤ maxB
• strict dominance: AR≤SD

B if maxA ≤ minB
– Pairwise-bound or lattice dominance: AR≤PD

B if minA ≤ minB and maxA ≤
maxB, whose extension to belief functions studied in [5] correspond to our
proposal.

Extensions of this kind are connected to the extensions of stochastic dominance
explored in [2].

4 Preservation by functional mapping

In this section, we investigate how we can check whether a relation is preserved by
a functional mapping, in the univariate case (multivariate case easily follows).
Such mappings are indeed used in lots of applications involving uncertainty
propagation (e.g., multi-criteria decision making, risk analysis, . . . ).

Let f be some function with domain X and codomain Y , i.e., f : X → Y .
The image f(A) of A ⊆ X under f is the subset f(A) = {f(x) : x ∈ A} ⊆ Y .
More generally, the image f(m) of some mass function m ∈ BX under f is the
mass function f(m) ∈ BY defined as

f(m)(B) =
∑

f(A)=B

m(A) for all B ⊆ Y. (7)

Definition 1. Let f : X → Y . Let RX and RY be relations on 2X and 2Y ,
respectively. The pair (RX ,RY ) of relations RX and RY is said to be compatible
with respect to f (f -compatible for short) if, for all A,B ⊆ X,

ARXB ⇒ f(A)RY f(B).

Example 1. Let RX
⊆ be the relation corresponding to inclusion on X, i.e., ARX

⊆B

iff A ⊆ B, A,B ⊆ X. Similarly, let RY
⊆ denote inclusion on Y . Since for any

function f and any A,B ⊆ X such that A ⊆ B it holds that f(A) ⊆ f(B),
the pair (RX

⊆ ,R
Y
⊆) is f -compatible for any f . Similarly, the pair (RX

⊂ ,R
Y
⊆) is

f -compatible for any f .
Now, let X and Y be two ordered spaces and let RX

≤PD
and RY

≤PD
be the re-

lations corresponding to pairwise-bound dominance on X and on Y , respectively.
Then, the f -compatibility of pair (RX

≤PD
,RY
≤PD

) depends on f . In particular, if
f is monotonically non-decreasing, we have f(A) ≤PD f(B) for all A,B ⊆ X
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such that A ≤PD B, and thus the pair (RX
≤PD

,RY
≤PD

) is f -compatible for such
f . However, this pair is not f -compatible when f is monotonically non-increasing
since in general we have in this case A ≤PD B 6⇒ f(A) ≤PD f(B).

Proposition 9 (Preserved compatibility). If (RX ,RY ) is f -compatible, it
is so on belief functions:

m1R
Xm2 ⇒ f(m1)RY f(m2). (8)

Proof (sketch). Consider a joint mass m12 on X satisfying satisfying (4)-(6) for
RX . Then if RX ,RY is f -compatible, mapping m12 through f results in a joint
mass showing that f(m1)RY f(m2).

We note that Proposition 9 and its straightforward extension to multivariate
functions (not presented here due to lack of space) generalize results in [4, 5]
concerning inclusion and ranking.

5 Conclusion

In this paper, a very general way to extend a binary relation on sets to a binary
relation on belief functions is introduced. Several results are provided to assess
which properties of the relation are preserved through this mechanism. Our
proposal is also connected to more specific generalisation of binary relations, such
as the notion of specialisation. Consequently, our results are also a generalisation
of pre-existing ones for specific relations.

We believe that the original ideas presented in this paper shall reach out a
large audience of belief function practitioners wishing to address multi-criteria
decision making, reliability analysis or optimisation problems, in which some
relations such as ranking or information loss relations can play a significant role.
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