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Abstract. In a recent paper [12], we introduced a new family of evidential dis-
tances in the framework of belief functions. Using specialization matrices as a
representation of bodies of evidence, an evidential distance can be obtained by
computing the norm of the difference of these matrices. Any matrix norm can be
thus used to define a full metric. In particular, it has been shown that the L1 norm-
based specialization distance has nice properties. This distance takes into account
the structure of focal elements and has a consistent behavior with respect to the
conjunctive combination rule. However, if the frame of discernment on which the
problem is defined has n elements, then a specialization matrix size is 2n× 2n.
The straightforward formula for computing a specialization distance involves a
matrix product which can be consequently highly time consuming. In this article,
several faster computation methods are provided for Lp norm-based specializa-
tion distances. These methods are proposed for special kinds of mass functions
as well as for the general case.

1 Introduction

The belief function theory, or evidence theory [6, 16], is a formal framework for
reasoning under uncertainty. In the past decades, a growing interest has been
shown toward determining meaningful dissimilarity measures between bodies of
evidence. These measures are used in belief function approximation computa-
tion [1, 4, 5, 2], in belief functions clustering [15, 8], in evidential data classifi-
cation [19], in evidential sensor reliability assessment [9, 18] or in estimation
of some parameters feeding refined belief function combinations [7, 13] or up-
date processes [11]. All (dis)similarity measures attempt to describe the degree
of (non-)alikeness between belief functions in a meaningful way for the widest
range of applications. Indeed, the choice of a particular measure is most of the
time application-dependent.
A thorough survey about dissimilarity measures in the evidence theory and their
properties was presented by Jousselme and Maupin [10]. The authors also pro-
vided generalizations of some distances thereby introducing families of new mea-
sures.
We introduced in [12] a new family of evidential distances based on special-
ization matrices as a representation of bodies of evidence. In particular, the L1

norm-based specialization distance has unprecedented properties as compared to
state-of-the-art approaches. Unfortunately, a straightforward implementation of
specialization distances requires a rather large computation time. In this work,
we provide several faster computation methods for Lp norm-based specialization



distances. These methods allow a computation at least as fast as for usual eviden-
tial metrics.
The rest of this paper is organized as follows. Section 2 provides the preliminar-
ies of evidence theory. In section 3, faster computation methods for the Lp norm
are proposed for special kinds of mass functions as well as for the general case.
Finally, we conclude the paper in section 4.

2 Belief function framework: notations and definitions

In this section, mathematical notations for classical belief function concepts are
given. The reader is expected to be familiar with belief function basics and con-
sequently some definitions are not recalled. More material on belief functions
basics is found in [12]. A greater stress is given to a reminder on matrix calculus
as part of the belief function framework and on some specialization distances.

2.1 Belief function basics

For a given body of evidence Evi, the corresponding mass function representing
this piece of evidence is denoted by mi. These functions are set-functions with
respect to a frame of discernment denoted by Ω . The power set 2Ω is the set
of all subsets of Ω and it is the domain of mass functions. For any A ∈ 2Ω , the
cardinality of this set is denoted by |A| and |Ω | = n. The cardinality of 2Ω is
denoted by N = 2n. Mass functions have [0,1] as codomain and they sum to one.
A focal element of a mass function mi is a set A ⊆ Ω such that mi(A) > 0. A
function having only one focal element A is called categorical mass function
and denoted by mA.
The most widely used way to combine pieces of evidence is to apply the conjunc-
tive combination rule to their corresponding mass functions. This rule is denoted
by ∩©. For two given mass functions m1 and m2, their conjunctive combination
is denoted by m1 ∩©2 = m1 ∩©m2. The conjunctive rule is a generalization of evi-
dential conditioning (or Dempster’s conditioning) which is itself a generalization
of Bayesian conditioning. Indeed when mass functions are replaced with proba-
bility distributions, then Bayes’ theorem is retrieved. An updated mass function
given A is denoted by m(.|A) = m ∩©mA. The conjunctive rule can be applied if all
sources of information providing pieces of evidence are fully reliable in the sense
that the pieces of evidence they provide are true.

2.2 Belief functions and matrix calculus

Mass functions can be viewed as vectors belonging to a vector space spanned
by categorical mass functions. Since mass functions sum to one, the set of mass
functions is the simplex of that vector space. In this paper, the following notations
and conventions are used :
• Vectors are written in bold small letters and matrices in bold capital letters.
• Vectors are column vectors and their length is N. The ith element of a mass

function vector m is such that mi = m(A) with i the index of set A according
to the binary order. The binary order [17] is a common way to index elements
of 2Ω without supposing any order on Ω .



• Matrices are square and their size is N×N. A matrix can be represented by
X = [Xi j], or alternatively by the notation X = [X(A,B)], ∀A,B ∈ Ω . The
row and column indexes i and j are those corresponding to the subsets A and
B using the binary order.

Matrix calculus as part of the BFT is especially interesting when it comes to
conjunctive combination computation. Indeed, from Smets [17], one has:

m1 ∩©2 = M−1diag(Mm1)Mm2, (1)

with diag the operator turning a vector into a diagonal matrix and M a matrix
such that M(A,B) = 1 if A⊆ B and M(A,B) = 0 otherwise. Note that this matrix
can be computed using n iterations of the following recurrence:

M(i+1) =

[
1 1
0 1

]
⊗M(i), (2)

with ⊗ the Kronecker matrix product and M(0) = [1]. Furthermore, the matrix S1
such that S1m2 = m1 ∩©2 is called the Dempsterian specialization matrix of m1.
This matrix thus writes:

S1 = M−1diag(Mm1)M. (3)

Each element of S1 represents actually the mass assigned to a set A after condi-
tioning on B: S1(A,B) = m1 (A|B). In other words, S1 does not only represent the
current state of belief depicted by m1 but also all reachable states from m1 through
conditioning. From a geometric point of view [3], a specialization matrix contains
the vertices the conditional subspace associated with the function m. Specializa-
tion matrices are consequently relevant candidates for assessing dissimilarities
between bodies of evidence in consistence with evidential conditioning and the
conjunctive combination rule.

2.3 Specialization distances

The most natural way to design distances between specialization matrices is to
rely on a given matrix norm ‖ . ‖x. Indeed, suppose two bodies of evidence1

represented respectively by m1 and m2, then the following function dSx is a nor-
malized full metric:

dSx(m1,m2) =
1
ρ
‖ S1−S2 ‖x (4)

with ρ = maxmi,m j ‖ Si−Sj ‖x a normalization coefficient. Such distances are
called specialization distances.
In this article, we focus on specialization distances relying on the Lp matrix
norms. These distances are denoted by dp. For these distances, the normalization

coefficient is known in closed form: ρ = (2(2n−1))
1
p . Choosing Lp norm-based

specialization distances is justified by the fact that, in particular, the distance d1
has interesting properties [12]. It takes into account the interactions2 between fo-
cal elements (structural property) and two mass functions are necessarily closer

1 For the sake of clarity, the distinction between a body of evidence and its corresponding mass
function is omitted in equations.

2 For instance, focal elements may have a non-empty intersection.



after conjunctive combination with addionnal evidence (conjunctive consistency
property).
The straightforward computation of distances dp is given by :

dp(m1,m2) =
1
ρ
‖M−1diag(M(m1−m2))M ‖p . (5)

Unfortunately, equation (5) involves a matrix product. Its complexity is thus
O(N3). Such a complexity can be prohibitive for many application contexts and
appears to be greater than the complexity of other evidential distances. Conse-
quently, faster ways to compute distances Lp are investigated in the next section.

3 Faster computation of Lp norm-based specialization
distances

In this section, new computation methods are introduced for Lp norm-based spe-
cialization distances. First, some results are given for special cases of mass func-
tions and in the last subsection, an algorithm is provided for the general case.

3.1 Distances between categorical mass functions
A fast way to compute Lp norm-based specialization distances between categori-
cal mass functions is already given in [12]. Indeed, it is proved in this article that
there exists an bijective link between the Hamming set distance and distances dp
restricted to categorical mass functions. More precisely, one has:

dp (mA,mB) =

(
N−2n−|A∆B|

N−1

) 1
p

, (6)

with ∆ the set symmetric difference. The cardinality of the set symmetric differ-
ence is the Hamming set distance.
The interest of equation (6) is twofold: first the computation for such distances
is now just O(1), and second, it also sheds light on the fact that there is an order
isomorphism between the Hamming set distance and the specialization distance.
This latter property is extremely important for evidential distances as it proves
that the distance abides by the structural principle stated in [10].

3.2 Distances between a categorical mass function and any mass
function
In this subsection, a broader case is investigated: computation of distances dp
between a categorical mass function and any mass function. We provide a result
only for the L1 norm-based specialization distance d1:

Proposition 1. Suppose m is a mass function on a frame Ω . Suppose A⊆Ω and
mA is its corresponding categorical mass function. The specialization matrix of
m is denoted by S and that of mA by SA. One has:

d1 (m,mA) =
N− ‖ S◦SA ‖1

N−1
, (7)

=
N− tr (S tSA)

N−1
, (8)



with ◦ the Hadamard matrix product3, tr the matrix trace operator and tSA the
transpose matrix of SA.

Proof. By definition of the L1 norm, one has :

‖ S−SA ‖1= ∑
X ,Y⊆Ω

|S(X ,Y )−SA(X ,Y )|.

It is known that SA(X ,Y ) = 1 if A∩Y = X and SA(X ,Y ) = 0 otherwise, which
gives:

‖ S−SA ‖1 = ∑
X ,Y⊆Ω

X=A∩Y

(1−S(X ,Y ))+ ∑
X ,Y⊆Ω

X 6=A∩Y

S(X ,Y ),

= ∑
X ,Y⊆Ω

X=A∩Y

1+ ∑
X ,Y⊆Ω

X 6=A∩Y

S(X ,Y )− ∑
X ,Y⊆Ω

X=A∩Y

S(X ,Y ),

= ‖ SA ‖1 + ∑
X ,Y⊆Ω

S(X ,Y )−2 ∑
X ,Y⊆Ω

X=A∩Y

S(X ,Y ),

= ‖ SA ‖1 + ‖ S ‖1 −2 ‖ S◦SA ‖1 .

Since the L1 norm of any specialization matrix is N, and remembering that ρ =
2N−2 when p = 1, equation (7) is retrieved:

‖ S−SA ‖1 = 2N +2 ‖ S◦SA ‖1,

⇔ d1 (m,mA) =
N− ‖ S◦SA ‖1

N−1
.

Equation (8) is obtained from equation (7) using a classical algebra result. ut

In terms of computation time, equation (7) should be preferred. Specialization
matrices have 3n non-null elements. The Hadamard product can be restricted to
the entrywise product of these non-null elements. The complexity of equation (7)
is thus:

O(3n) = O
(

N
log(3)
log(2)

)
,

≈ O
(

N1.58
)
.

3.3 Distances between any mass functions

We now address the dp distance computation problem in the general case. An al-
gorithm for optimizing this computation will be introduced. This algorithm relies
on the following result:

Proposition 2. Suppose m is a mass function on a frame Ω . Suppose X ⊆Y ⊆Ω
and let z /∈ Y . The following result holds:

m(X |Y ) = m(X |Y ∪{z})+m(X ∪{z}|Y ∪{z}) . (9)

3 The Hadamard matrix product is the entrywise product or Schur product. Let X, Y and Z be
three matrices such that X◦Y = Z, then we have Zi j = Xi jYi j , ∀i and j.



Proof. By definition of evidential conditioning, one has:

m(X |Y ) = ∑
A⊆Ω

A∩Y=X

m(A) = ∑
A⊆Ω

A∩Y=X ,z∈A

m(A)+ ∑
A⊆Ω

A∩Y=X ,z/∈A

m(A). (10)

Let us deal with the first term in equation (10). We need to prove that A∩Y = X
and z ∈ A if and only if A∩ (Y ∪{z}) = X ∪{z}. Let us prove first that A∩Y = X
and z ∈ A implies A∩ (Y ∪{z}) = X ∪{z}. If z ∈ A then

A∩ (Y ∪{z}) = (A∩Y )∪ (A∩{z} ) = A∩Y ∪{z} .

In addition if A∩Y = X , we obtain:

A∩ (Y ∪{z}) = X ∪{z} .

Reciprocally, let us now prove that A∩(Y ∪{z}) = X∪{z} implies A∩Y = X and
z ∈ A. Suppose that X ∪{z} = A∩ (Y ∪{z}) = (A∩Y )∪ (A∩{z} ). Since z /∈ Y ,
z /∈ A∩Y , hence z ∈ A∩{z}, which implies z ∈ A.
In addition, we also have X ∪{z} = (A∩Y )∪{z}. Since z /∈ Y , then (A∩Y )∪
{z} \ {z} = A∩Y . Again, since z /∈ Y , then z /∈ X and therefore X ∪{z} \ {z} =
X = A∩Y . From the above reasoning, we deduce:

∑
A⊆Ω

A∩Y=X ,z∈A

m(A) = ∑
A⊆Ω

A∩(Y∪{z})=X∪{z}

m(A) = m(X ∪{z}|Y ∪{z}) .

Let us now deal with the remaining term in equation (10). We need to prove that
A∩Y = X and z /∈ A if and only if A∩ (Y ∪{z}) = X . Let us prove first that
A∩Y = X and z ∈ A implies A∩ (Y ∪{z}) = X . Suppose z /∈ A and A∩Y = X .
One can write:

A∩ (Y ∪{z}) = (A∩Y )∪ (A∩{z} ) ,
= A∩Y ∪ /0,

= X . (11)

Reciprocally, let us prove that A∩ (Y ∪{z}) = X implies A∩Y = X and z /∈ A.
Suppose that X = A∩ (Y ∪{z}) = (A∩Y )∪ (A∩{z} ). Since z /∈ Y , then z /∈ X .
We thus have z /∈ A∩ {z}, which implies z /∈ A. In addition, this leads to X =
A∩Y ∪ /0 = A∩Y . From this reasoning, we deduce:

∑
A⊆Ω

A∩Y=X ,z/∈A

m(A) = ∑
A⊆Ω

A∩(Y∪{z})=X

m(A) = m(X |Y ∪{z}) .ut

Proposition 2 is especially interesting when it comes to specialization matrix
computation as it shows that any element of the matrix can be obtained by adding
two other elements belonging to a right-hand column and lower lines. Since the
last column vector is equal to m, this matrix can be built incrementally starting
from the column with index N − 1 down to the first column. In each column,
we start with the lowest element up to the top one. This procedure is given by
algorithm 1.
This fast specialization matrix computation algorithm can be directly used with
m1−m2 as entry in order to obtain the matrix difference S1−S2. This algorithm



Algorithm 1 Fast computation of a specialization matrix S
entries : m, N, M.
S← 0, the null matrix.
for X ⊆Ω do

S(X ,Ω)← m(X)
end for
for Y ( Ω (following the decreasing binary order) do

for X ⊆ Y (following the decreasing binary order) do
if M(X ,Y )> 0 then

choose z ∈ Ȳ .
S(X ,Y )← S(X ,Y ∪{z})+S(X ∪{z} ,Y ∪{z}).

end if
end for

end for
return S.
End

can also compute recursively distance dp by updating its value each time a new
element S1(X ,Y )−S2(X ,Y ) is obtained. Given the definition of matrix M, there
are 3n loops in algorithm 1. Similarly to the previous subsection, the distance
dp computation complexity for any mass functions is thus O

(
N1.58). Figure 1

illustrates the computation time ease induced by algorithm 1 as compared to the
computation time when using equation (5). These results were obtained using a
laptop with an Intelr centrino2 2.53 GHz CPU and GNU Octave c© program-
ming environment. It can be seen that the log-ratio of computation times is linear
with respect to n which is compliant with the claim that the complexity dropped
from O

(
N3) to O

(
N1.58).

Concerning distance computation, it should also be noted that algorithm 1 does
not only improve the time-complexity but also the memory occupation. Indeed, it
is unnecessary to store the whole matrix S1−S2 when computing a specialization
distance because some colums will never be used again and one can anticipate
that.
Most of state-of-the-art evidential metrics4, such as Jousselme distance, resort to
a product between a matrix and a mass function vector. Their complexity is thus
O
(
N2) (using naive programming). Consequently, we have succeeded in making

the Lp norm-based specialization distances at least as attractive as other evidential
metrics in terms of computation time.

4 Conclusion

In this article, several methods for a faster computation of Lp norm-based special-
ization distances are introduced. Initially, such distances are computed in O

(
N3)

with N the size of the power set of the frame of discernment. We provide an al-
gorithmic way to reduce this complexity to O

(
N1.58) in the general case. In case

of categorical mass functions, the complexity is just O(1).
Using these approaches, Lp norm-based specialization distances become usable
tools for several potential applications. In particular, we plan to tackle mass func-
tion approximation problems using specialization distance minimization. The

4 Perry and Stephanou [14] introduced a full metric with O(N) complexity but it fails to grasp
structural mass function aspects (see [10]).
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Fig. 1. Comparison of computation times using the classical approach (equation (5)) and using
our faster approach (algorithm 1).

hope is that the one-of-a-kind properties of such distances will help resolving
approximation problems more efficiently.
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