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Abstract Image data i.e. pixel values are notably corrupted with uncertainty. A pixel
value can be seen as uncertain because of additional noise due to acquisition con-
ditions or compression. It is possible to represent a pixel value in a more imprecise
but less uncertain way by considering it as interval-valued instead of a single-valued.
The Belief Function Theory (BFT) allows to handle such interval-based pixel rep-
resentations. We provide in this paper a model describing how to define belief func-
tions from image data. The consistency of this model is demonstrated on edge detec-
tion experiments as conflictual pixel-based belief functions lead to image transitions
detection.

1 Introduction

The Belief Function Theory (BFT) [3, 8], also known as evidence theory or Dempster-
Shafer theory, provides a framework for processing uncertain and imprecise data. As
image data can be considered as such, an evidential model leading to a new repre-
sentation of pixel values can be introduced. Existing evidential image processing
approaches are mainly dedicated to information fusion on multiple image compo-
nents or neighbor pixels as part of pixel classification algorithms [1, 10]. In this
article, we intend to process images using the BFT under a new perspective by in-
troducing a model that translates directly each raw pixel value into a belief function.
Indeed, a pixel value equals x with probability p. It is also possible to consider
that the pixel value belongs to the interval [x−q,x+q] with a probability p′ > p
and q > 0. This piece of information can be easily encoded using a belief function.
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In section 2, BFT fundamental concepts necessary for our approach are recalled.
Section 3 presents a methodology to represent pixel values as belief functions. Sec-
tion 4 introduces results for pixel conflict computation. Finally, in section 5, the
consistency of the model is demonstrated through edge detection experiments on
synthetic gray-scale images.

2 Belief functions fundamentals

In this section, BFT fundamentals are briefly recalled. The BFT provides a formal
framework for dealing with both imprecise and uncertain data. The finite set of
mutually exclusive solutions is denoted by Ω = {ω1, ...,ωK} and is called the frame
of discernment. The set of all subsets of Ω is denoted by 2Ω . A source Si collects
pieces of evidence leading to the assignment of belief masses to some elements of
2Ω . The mass of belief assigned to A by Si is denoted mi (A). The function mi : 2Ω →
[0,1] is called basic belief assignment (bba) and is such that: ∑A⊆Ω mi (A) = 1.
A set A such that mi (A) > 0 is called a focal element of mi. A bba is denoted by
Amx if it has two focal elements: Ω and A ( Ω , and if:

Amx (A) = 1− x and Amx (Ω) = x. (1)

with x ∈ [0,1]. Such bbas are called simple bbas (sbbas). The bba denoted by Am0,
or simply Am, stands for the certainty that the truth belongs to A. Thus, Ω m stands
for total ignorance (Ω m(Ω) = 1); it is called the vacuous bba. To combine bbas
issued by reliable sources, the conjunctive rule ∩© can be used:

∀X ∈ 2Ω ,m1 ∩©2 (X) = ∑
B,C|B∩C=X

m1 (B)m2 (C) . (2)

The mass m( /0) is denoted by κ and called the degree of conflict. This mass is
given support when S1 and S2 advocate respectively for non-intersecting solutions.
It is thus an indication on how much the two sources disagree.

Furthermore, it is possible to reduce the impact of a source of information and its
corresponding bba using an operation called discounting [8]. This can be required
for several reasons notably if the source of information is known to be unreliable
or to enclose perishable information. Discounting mi with discount rate α ∈ [0,1] is
defined as:

mα
i (X) = (1−α)mi (X)+α1X=Ω (3)

with 1 the indicator function. The higher α is, the stronger the discounting. Thanks
to discounting, a source’s bba is transformed into a function closer to the vacuous
bba and m1

i =
Ω m. One may remark that a sbba Amx is Am discounted with rate x.
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3 A model for pixel representation using belief functions

In this section, our evidential pixel representation (EPR) model is introduced. Let
us denote a pixel p = (px, py) with px and py its coordinates along the two image
axes. An 8-bit gray-scale image can be represented by a function I (p) such that
0 ≤ I (p)≤ 255.
The measured image Ĩ can be viewed as the sum of the true image and a ran-
dom noise B: Ĩ = I +B, and B(p) ∼ fb the noise density function. Suppose one
is able to find a cumulative distribution function F such that ∀q,F (q) ≥ Fb (q) =∫ q
−∞ fb (ν)dν , then the following assertion holds:

1−2F (−q)≤ P
(
true pixel value I (p) ∈

[
Ĩ (p)−q, Ĩ (p)+q

])
≤ 1 (4)

For example, in case of a Gaussian centered noise, F is simply the cumulated density
of a centered Gaussian function with a greater standard deviation than that of fb.
Now, by choosing Ω = {0, ...,255}, the set of integers between 0 and 255, this
information on a pixel value is represented by the following parametrized bba mp,q:

mp,q = [Ĩ(p)−q,Ĩ(p)+q]m2F(−q) (5)

Multiple bbas may be defined by this mean, as it is difficult to determine what value
for q to choose. Because the image is quantized, the set of possible values for q
is Q = {0.5,1.5, ...,255.5}. These values yield intervals of width 1, 3 and so long
up to 511. The focal sets drawn from these intervals are their intersections with Ω .
Building a bba with q = 255.5 is only interesting when the pixel value is 0 or 255.
For other pixel values, we have mp,255.5 =

Ω m (vacuous bba). To cumulate all pieces
of evidence, we propose to define the bba representing pixel p as the conjunctive
combination of parametrized bbas for all possible values of q:

mp =
∩©

q∈Q
mp,q. (6)

A frequent criticism addressed to the BFT is the computational load induced by large
frames of discernment. In this paper, the cardinal of 2Ω is 2255, thus computing the
above bba using equation (2) is infeasible. Yet, since the set of bbas to combine has
some particular properties, this computation can be easily done using the following
proposition:

Theorem 1. Let
{

mi =
Ai mαi

}N
i=1 be a set of sbbas with focal elements such that

A1 ( A2 ( ... ( AN ( Ω . Let us denote m ∩© the conjunctive combination of these
sbbas. We have:

m ∩© (X) = (1−αi)
i−1

∏
j=1

α j1X=Ai +
N

∏
j=1

α j1X=Ω (7)

Proof. The focal elements of m ∩© are the sets {Ai}N
i=1 and Ω . For {Ai}N

i=1, we have:
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m ∩© (Ai) = ∑
∩N

j=1B j=Ai,B j⊂Ω

A1 mα1 (B1) ...
AN mαN (BN)

The condition under the sum can only be verified if ∀ j < i,B j = Ω and Bi = Ai.
Since Ai mαi (Ai) = (1−αi) and ∀ j < i, A j mα j (Ω) = α j, we have:

m ∩© (Ai) = (1−αi)
i−1

∏
j=1

α j ∑
∩N

j=i+1B j∩Ai=Ai,B j⊂Ω

Ai+1 mαi+1 (Bi+1) ...
AN mαN (BN)

The condition remaining under the sum is always verified because ∀ j > i, Ai ∩A j =

Ai. Therefore, we have: m ∩© (Ai) = (1−αi)∏i−1
j=1 α j.

Finally, the mass allocated to Ω is easily obtained from more general results about
the conjunctive rule: ∀mi,m j, mi ∩©m j (Ω) = mi (Ω)m j (Ω). ut

Note that, if one draws this way two bbas mp and mp′ for two different pixels with
identical intervals width q, then we have ∀i, mp (Ai) = mp′ (A

′
i) = βi. The masses of

these bbas are always the same, only the focal sets differ.

4 Pixel conflict computation

In the previous section, we have obtained bbas mp representing uncertain and im-
precise values of each pixel. We present now a simple way to compute pixel-based
degree of conflict.
As mentioned before, the cardinality of Ω makes it hard to compute the degree of
conflict using equation (2). To overcome this difficulty, we propose to use a result
from [4]. It is shown in that article that if there is at least one pairwise positive de-
gree of conflict among a set of bbas {mi}M

i=1, then the global conflict of a set of
identically discounted bbas can be approximated by the sum of pairwise degrees of
conflict. Consequently, it is semantically equivalent to compute the global degree of
conflict or the sum of pairwise degrees of conflict, as identically discounting bbas
preserves their relative prevalences. The pairwise conflict of two bbas mp and mp′

can be easily computed using the following result:

Theorem 2. Let mp and mp′ be two bbas obtained from the process described in
section 3. Then their pairwise conflict κ{p,p′} is a function of ∆ =

∣∣Ĩ (p)− Ĩ (p′)
∣∣

and

κ{p,p′} (∆) =


κ{p,p′} (∆ −1)+2

∆/2
∑

k=1
βkβ∆−k if ∆ is even,

κ{p,p′} (∆ −1)+2
(∆−1)/2

∑
k=1

βkβ∆−k +β 2
(∆+1)/2 if ∆ is odd,

(8)

Proof. If one denotes by k the index of a focal element of mp and by l the index of a
focal element of mp′ , those with empty intersections are such that k+ l ≤ ∆ . Conse-
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quently, we obtain κ{p,p′} = ∑
k+l≤∆

βkβl . It can be seen that κ{p,p′} is a function of ∆

which can be recursively computed. Indeed, we have κ{p,p′} (∆)−κ{p,p′} (∆ −1)=

∑
k+l=∆

βkβl . In the end, some elements of ∑
k+l=∆

βkβl are counted twice that is why

two cases are distinguished corresponding odd and even values of ∆ . ut

The values of βi for all i and of κ{p,p′} (∆) for all ∆ can be stored in a lookup table,
making it easy and fast to compute pixel pairwise degrees of conflict. The method
appears to be based only on pixel value differences. The function applied to these
differences is entirely justified using the BFT and is based on conflict.

5 Experiments on edge detection

The degree of conflict of bbas belonging to the neighborhood Vp of pixel p is
obtained as follows: κ (p) = ∑p′∈Vp κ{p,p′}. It is likely to be a relevant feature
for assessing the presence of an edge at pixel p. Consequently, edge detection
was chosen to demonstrate the consistency of EPR. For using the EPR, one must
first define function F . The unkown noise fb is supposed to be centered and
Gaussian. The function F is thus defined likewise with a greater standard devia-
tion σEPR than that of the noise. A pixel neighborhood Vp is defined as follows:

Vp =
{

p′|
√

(px − p′x)2 +(py − p′y)2 ≤ hEPR

}
. An edge dectector yields a binary

edge image whereas κ (p) corresponds to an image containing edge probabilities (if
normalized). If κ (p) appraises correctly image edges, then it should be compliant
with output edge probability distributions drawn from classical edge detection algo-
rithms. The algorithms retained for the experiments are : Roberts [7], Prewitt [6],
Sobel [9], Canny [2] and LoG [5] edge detectors. Roberts, Prewitt and Sobel de-
tectors are based on image first derivatives whereas LoG is based on second order
derivatives. Canny [2] introduced a filter as an optimal solution in terms of detec-
tion of step edges, edge localization and uniqueness. In addition to filtering, his
approach also comprises two other steps helping to obtain thin edges and to remove
false edges. To allow a fair comparison of the methods, we only use in the experi-
ments the filtering part of Canny’s approach.
Roberts, Sobel and Prewitt are parameter-free, but LoG, Canny and κ (p) are de-
pending on two parameters each: a filter spread hLoG, hCanny, hEPR respectively and
a standard deviation σLoG, σCanny, σEPR respectively. For Canny and LoG, the filter
spread is usually greater than at least three times the standard deviation. Concerning
hEPR, its value was set to 2 for all experiments. σLoG, σCanny, σEPR are hand-tuned
in each experiment. The value yielding the lowest Kullback-Leibler DKL divergence
is retained. This criterion is defined as:

DKL (Ie||GT ) = ∑
p

Ie (p) log
(

Ie (p)
GT (p)

)
(9)
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where Ie is an edge probability image and GT the ground truth. When these distribu-
tions are identical DKL (Ie||GT ) = 1. Higher values are obtained when the distribu-
tions are different. This criterion is adapted to our purpose as it penalizes wrongly
located edges, thick edges and partially detected edges. Note that a contrast en-
hancement is used on some of the images displayed in this section in order to help
the reader to percieve some image details.

5.1 Omni-directional edges

In this experiment, the dependence on edge direction is examined. A synthetic im-
age I1 containing a ramp-edge in shape of a circle is used. The edge is made of two
transitions: from 0 to gray level 125 and from 125 to 255. When using a step-edge
with a single transition from 0 to 255, the edge is located at a subpixel precision
which makes it harder to define a ground thruth.
I1, its corresponding ground truth GT as well as the output edge probability distribu-
tions produced by several approaches are presented in Figure 1. The DKL obtained
in this experiment are gathered in Table 1. κ (p) produces the smallest divergence
because the edge distribution is thinner.

Fig. 1 From top-left to down-
right: input image I1, ground
truth GT , output edge dis-
tribution using Roberts, So-
bel, Prewitt, Canny, LoG
and κ (p). σCanny = 0.3,
σLoG = 0.9 and σEPR = 1e5

Table 1 Performances of several edge detection methods on synthetical image I1.

Method Roberts Sobel Prewitt Canny σCanny = 0.3 LoG σLoG = 0.9 κ (p) σEPR = 1e5

DKL 8.61 8.32 8.52 7.88 11.56 3.81

5.2 Edges with varying contrast

In this experiment, the dependence on edge contrast is examined. The input im-
age I2 is obtained by shading I1. I2, GT and the edge probability distributions are
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presented in Figure 2. The corresponding DKL are gathered in Table 2. κ (p) pro-
duces the smallest divergence because the transitions inside the circle are filtered
out. The divergence is more stringent on this aspect than on detecting the whole
circle. Smaller values of σEPR leads to performances close to Canny’s ones.

Fig. 2 From top-left to down-
right: input image I2, ground
truth GT , output edge dis-
tribution using Roberts, So-
bel, Prewitt, Canny, LoG
and κ (p). σCanny = 0.4,
σLoG = 0.9 and σEPR = 1e5

Table 2 Performances of several edge detection methods on synthetical image I2.

Method Roberts Sobel Prewitt Canny σCanny = 0.4 LoG σLoG = 0.9 κ (p) σEPR = 1e5

DKL 9.98 9.70 9.84 9.40 11.82 4.53

5.3 Robustness to Gaussian noise

In this experiment, the robustness to additive Gaussian noise is examined. The input
image I3 is obtained by adding to I2 such a noise with standard deviation σb = 50.
I3, GT and the edge probability distributions are presented in Figure 3. The corre-
sponding DKL are gathered in Table 3. Again, κ (p) produces the smallest divergence
because non-relevant transitions are filtered out. Obviously, if the edge distributions
were thresholded, Canny’s approach would detect a larger part of the circle than
κ (p). Smaller values of σEPR lead to output images close to Canny’s. It is important
to remind that it is only intended to validate EPR and not to introduce an edge
detector. For such a purpose, additonal experiments involving image thresholding
and natural images are needed.

Table 3 Performances of several edge detection methods on synthetical image I3.

Method Roberts Sobel Prewitt Canny σCanny = 1.5 LoG σLoG = 1.2 κ (p) σEPR = 1e5

DKL 13.31 12.85 12.83 12.28 13.13 12.02



8 John Klein and Olivier Colot

Fig. 3 From top-left to down-
right: input image I3, ground
truth GT , output edge dis-
tribution using Roberts, So-
bel, Prewitt, Canny, LoG
and κ (p). σCanny = 1.5,
σLoG = 1.2 and σEPR = 1e5

6 Conclusion

In this paper, a model for pixel representation (EPR) is proposed. This model is
based on the belief function theory. The consistency of this model was proved
through preliminary edge detection experiments. Indeed, the degree of conflict of
neighbor pixels appears to be a relevant feature to assess the presence of an edge.
The approach is easy to implement and and does not require a heavy computation
load. The goal behind this paper is to pave the way for future evidential image pro-
cessing developments. Some additional processes and experiments will be investi-
gated to introduce potentially a full edge detector. Furthermore, the EPR should also
be extended to multi-component images and other belief masses than the degree of
conflict may be exploited.
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