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Abstract

This article presents a preceding car rear view track-
ing algorithm which utilizes a particle filter and belief
function data fusion. Most of tracking applications re-
sort to only one source of information, making the sys-
tem dependent on the source reliability. To achieve
more robust and longer tracking, multiple source data
fusion is a solution. Belief functions are a powerful tool
for data fusion. Using bridges between probability the-
ory and belief function theory, data fusion information
can be incorporated inside a particle filter. The effi-
ciency of the proposed method is demonstrated on nat-
ural on-road sequences.

1. Introduction

Preceding car rear view tracking is a computer vision
problem which is dedicated to intelligent transportation
system applications. Given that input sequences are ac-
quired on-road, this tracking problem has its own spe-
cific challenges:

• the scene background is dynamically modified,
and consequently is difficult to model.

• strong illumination changes occur and disrupt
pixel value based methods.

• the scenes are cluttered, i.e. many objects have
identical visual properties.

Visual tracking quality mainly depends on two aspects:
the tracking procedure and the object model. Con-
cerning the tracking procedure, particle filters [5] have
proven to be more robust to occlusions thanks to ran-
dom sampling. In addition they do not put constraint
on object modeling, therefore they were retained as the
tracking procedure for our study. Object model can be
enhanced by using more a priori information and learn-
ing techniques [1], or by extracting more information

and performing data fusion [2]. This paper focuses on
the latter solution.
In existing data fusion particle filter approaches, the fu-
sion is obtained using probabilistic methods or by in-
corporating different sources at different steps of the
filter [2, 5]. Instead of designing a new strategy, we pro-
pose to use another data fusion technique: belief func-
tions.
Belief functions, also often referred as Dempster-Shafer
theory, can specifically address data fusion issues. Con-
cepts such as conflict between sources and ignorance
can be designed. Information fusion is obtained using a
combination rule, and is transformed into a probability
distribution [6]. Using this distribution the particle fil-
ter is run classically, and the tracking performances are
improved.
The paper is organized as follows: the first part presents
a particle filter adapted to visual tracking. The second
part introduces belief function theory and explains how
fusion information is drawn. The third part is dedicated
to results and method evaluation.

2. Particle filter based visual tracking

The particle filter (PF) used in this study is adapted
to visual tracking and similar to that of Perez et al. [5].
It is not intended to propose a new PF, but to point out
the interest of using belief function data fusion inside a
PF, which constitutes the originality of our work.

2.1 Particle filters

Particle filters use a hidden state vector Xt represen-
tation of the problem. In our context, this vector fully
describes the bounding box that is supposed to contain
the tracked object. PFs aim at estimating Xt, knowing a
second random vector Yt, referred to as the observation
vector. As in many inference problems, the estimation
of Xt is obtained using the estimation of the posterior



density p (Xt|Y1:t), where Y1:t corresponds to all avail-
able observations at time t.
In particle filters, this posterior density is estimated us-
ing Monte Carlo approximation and importance sam-
pling from a proposal density q(.). The samples X

(i)
t

drawn from q(.) are called particles with i ∈ {1, N}
the particle index. The chosen filter parametrisation is
the following1:

• the state is defined as XT
t = (it, jt, ht, wt), the

target center being (it, jt), and the box dimensions
being (ht, wt).

• The observations Yt correspond to a set of fea-
tures drawn from various extraction methods. Us-
ing these features the likelihood p (Yt|Xt) can be
estimated. Illumination changes, camera motion
and clutter disrupt this estimation.

• q = p (Xt|Xt−1), which is the state transition den-
sity. This density is itself chosen to be a random
walk. In these conditions, the particle sampling is
not restricted to some direction.

Disrupting events are unavoidable in natural scenes.
To overcome this difficulty we claim that using mul-
tiple features drawn from several cues is the best solu-
tion. Eventually, to design the likelihood, data fusion is
needed.

2.2 Particle filter and data fusion

There are many ways to perform data fusion inside a
particle filter. This study is restricted to data fusion at
the likelihood estimation step.
In most probabilistic data fusion PFs [2], additional ran-

dom observation variables are introduced:
{
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t
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=

Yt, if M extractors, i.e. M sources are used. By alleg-
ing independence, the Bayes rule yields:

p (Yt|Xt) =
M∏
i=1

p
(
ySi

t |Xt

)
(1)

with P
(
ySi

t |Xt

)
the likelihood drawn from source

number i.
In terms of data fusion, probability theory has some
drawbacks. It cannot explicitly take into account that
a source may give wrong information, or may give no
information at all for a period of time.
To avoid these matters, we propose to use a belief
framework: the Transferable Belief Model (TBM) [6],
which extends the probability theory. Using the TBM,

1more details on this parametrisation are available in [5]

some belief assigned to an event A does only give an
opinion about the possibility of A, and make no further
hypothesis about the non-event Ā. It is then easier to:

• deal with conflicting sources, i.e. a source that
gives credit to A and a second one to Ā.

• describe the fact that no information is available
from a given source.

The set of belief functions is broader than the set of
probability distributions. In this new space more com-
plex fusion processes can be designed, which justifies
our approach. Once the fusion belief function is ob-
tained from all sources, it has to be sent back on its cor-
responding probability set so as to fit in particle filters.
Using the TBM, we contribute to obtaining a more ro-
bust likelihood estimation.
Faux et al. [?] have mixed belief functions and a parti-
cle filter. Belief functions are meant to procude a robust
object model and do not explicitely interact with the fil-
ter. Due to the chosen model, only similar colour-based
sources (colour components) can be aggregated. With
our approach, different kinds of sources will be used.

3. Belief functions and likelihood estimation

3.1 Introduction to belief functions

Suppose a set Ω, containing K mutual exclusive hy-
potheses ωk, Ω = {ω1, .., ωK}. This set is named frame
of discernment, and some belief can be assigned to any
subset A of Ω. For a given source of information, the
belief assigned to the subsets of Ω are represented by
a basic belief assignment function (bba) defined on the
set of all subsets of Ω, often written as 2Ω. Let us denote
such a bba m [Sl] (A), with Sl being the source number
l. This function must be such that:

m [Sl] (A) : 2Ω → [0, 1] (2)∑
A⊆Ω

m [Sl] (A) = 1 (3)

In the probabilistic framework, we would have:∑K
k=1 P (ωk) = 1, which is a much stronger con-

straint than equation 3. As a consequence for exemple
m (A) = µ does not imply m

(
Ā

)
= 1 − µ. In other

words, in the TBM some belief is assigned to some sub-
set only if some piece of evidence justifies it.
In our context of visual object tracking, the belief that
the preceding car belongs to the observed image sub-
window must be evaluated. The frame of discern-
ment will be composed of three exclusive hypotheses
Ω = {ω1, ω2, ω3}:



ω1: the subwindow contains the targeted car
ω2: the subwindow contains a piece of the scene back-
ground
ω3: the subwindow contains any other vehicle
Two subsets of Ω have special roles:

• the belief given to Ω represents a part of ignorance.
One cannot choose one hypothesis over another

• the belief given to ∅ represents a part of conflict.
One believes that the actual solution is not in Ω.

We will now present how bbas are built from the ob-
served features.

3.2 Bba models

Four feature extraction techniques, i.e. four sources
{Sl}4

l=1, are used to characterize the tracked car:

• a colour distribution represents the shadow be-
neath the car.

• the car body colour-texture is characterized by a
colour co-occurrence matrix based method [3].

• shape information is exploited by symmetry cards
drawn from an image of contours.

• the scene movement is analyzed using Lefaix et al.
algorithm [4], so that independent movement from
the background can be detected.

For each source Sl, and each subset A that can be given
some credit, a distance dl between a model and the
observed subwindow corresponding to particle X

(i)
l is

computed. The model is a set of features computed on
a few images acquired a priori. Using this distance, a
Gaussian model is used to obtain bbas:

mA [Sl] (A) = Zl,A exp
(
−(dl,A/σl,A)2

)
(4)

mA [Sl] (Ω) = 1−mA [Sl] (A) (5)

with Zl,A a magnitude parameter and σl,A the standard
deviation of the Gaussian function. Bbas are defined for
only a few subsets2:
{ω1}: the car itself is detected.
{ω2}: a part of the background is detected (the road).
{ω1, ω3}: some vehicle is detected.
For a given bba, subsets that have positive values are
called focal elements of a bba.
The texture source produces two bbas, one dedicated to

2Note that one drawback of belief functions is the exponential cost
of increasing the frame of discernment. Not only the proposed frame
is only composed of three hypothesis, but also only a few subsets can
be given credit which dramatically simplifies belief computation.

{ω1} and another to {ω2}. All the other sources pro-
duce one bba related to {ω1, ω3}. Consequently there
are five bbas to aggregate. Selecting subsets for sources
is application dependent. All cars are moving simi-
larly, have roughly speaking similar shapes and shad-
ows, whereas its colour-texture is rarely perfectly iden-
tical, which justifies our choice.

3.3 Fusion process and likelihood estimation

Using the conjunctive rule of combination [6], a new
bba, denoted m ∩©, can be obtained from M other bbas
using the formula ∀A ⊆ Ω:

m ∩© (A) =
∑

B,C|B∩C=A

m [S1] (B)m [S2] (C)(6)

Let us give a worked out exemple of the above equation for the
movement source S1 and the shape source S2 combination:
these two sources have the same focal elements: {{ω1,ω3},Ω}.
Let us then calculate the combination of these two sources for
the subset {ω1,ω3}. Focal elements couples whose intersection
equals {ω1,ω3} must be identified:

({ω1,ω3},Ω) ; (Ω,{ω1,ω3}) ; ({ω1,ω3},{ω1,ω3})

Then the equation 6 for {ω1, ω3} is simply:

m1 ∩©2({ω1,ω3})=m[S1]({ω1,ω3})m[S2](Ω)+

m[S1](Ω)m[S2]({ω1,ω3})+m[S1]({ω1,ω3})m[S2]({ω1,ω3})

The combination is easily extended to more than 2
sources using the rule associativity. The principle of the
conjunctive rule is to extract common parts of pieces of
evidence from all sources and retain the most valuable
ones. The new bba m ∩© contains the fusional informa-
tion about the variable Yt|Xt. It can be transformed
into a probability distribution, denoted BetP (), using
the pignistic transform [6]:

BetP ({ω1}) =
∑
A⊆Ω

|ω1 ∩A|
|A|

m ∩© (A) (7)

Then by accepting p (Yt|Xt) = BetP (ω1), the track-
ing and fusion procedure is completed, and will be
referred to as the Credal Data Fusion Particle Filter
(CDFPF).

4. Results and discussion

Our approach was tested on a natural on-road video,
that contains 1300 frames. The sequence corresponds
approximately to a 6 minute and 11 kilometer long mo-
torway drive. Previously mentioned disrupting events



are encountered several times. Using one long sequence
with strong dynamic changes is more difficult to process
than several short seqeunces, since only one setting can
be used. Figure 1 shows the 5 images used to build the
object models, acquired from another sequence, and il-
lustrating the car visual variability.

Figure 1. Car body being shadowed or
brightened throughout the sequence

On figure 2 the estimated bounding box using our
CDFPF are shown at regular time gaps.

Figure 2. Tracking performance displayed
every 150 frames.

CDFPF outperforms other approaches and never
loses track of the preceding vehicle along the 1300
frames c.f. table 1.

Tracking method Failures Partial Tracking Full Tracking
(50 to 80% detected) (80 to 100% detected)

CDFPF 0 frame 475 frames 825 frames
Bayes data fusion PF 485 frames 170 frames 580 frames

Texture PF 550 frames 395 frames 355 frames

Table 1. Tracking quality comparison.

The best performing one-source approach is the tex-
ture PF. It maintains track up to frame 750, but the track-
ing quality is poor. The Bayesian data fusion PF pro-
duces a more accurate tracking, but completely loses
track of the preceding car after frame 815. The exper-
iments revealed that the classical Bayesian fusion ap-
proach is sensible to some lack of information. Indeed,

if equation 1 is applied strictly, then only one zero-
valued source likelihood implies a zero-valued global
likelihood and cause a tracking failure. In practice such
a source was discarded in the tests if maxi p

(
ySl

t |X(i)
t

)
is less or equal to a given threshold. However the
threshold is difficult to set since it has to be a com-
promise between losing information contained in small
likehoods on the one hand and risking a computa-
tional failure on the other hand. Even if the threshold
is efficient, the decision is riskier than CDFPF’s one.
CDFPF is free of these considerations and its perfor-
mance proves the relevance of using belief functions
data fusion.

5. Conclusion

In this article a new data fusion tracking algorithm
was introduced. This algorithm uses sequential Monte
Carlo techniques for tracking as well as the transferable
belief model for data fusion. Thanks to belief model-
ing of the tracking problem introduced in this article, a
more robust estimation of the likelihood was obtained.
The CDFPF was tested on on-road sequences, and
tracked a preceding car rear view with success. CDFPF
gave a satisfying response to tracking issues related to
car tracking. It shows the interest of using belief func-
tions inside a particle filter. In further works, it is in-
tended to make our approach cooperate with other par-
ticle filter data fusion strategies and to design more ro-
bust models using learning.
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