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Abstract— Visual tracking methods have been intensively
contributed in the past decade. Promising results have been
brought, leading to partial solution of the problem. However it
is still utmost difficult to maintain track of an object for a long
time, because some events can strongly disrupt the tracking
procedures. Such events are occlusions, clutters, illumination
changes, particular movements or pose changes. To overcome
these challenging events and produce more reliable tracking
algorithms, image data must be exploited through several
aspects, that is to say through several cues : texture, color, shape
or movement. But before being able to use these sources, one
must make sure that each of these sources is reliable and non-
redundant. In this article, we reckon that texture and color must
be jointly processed, and we propose a new color-texture feature
called weighted cooccurrence matrices. Using this feature within
a particle filter, successful car tracking examples are proposed.

I. INTRODUCTION
Object tracking is one of the most challenging problems

of computer vision. In the past decade great improvements
were performed, and some tracking algorithms already gave
remarkable results. Nowadays, the research efforts focus on
enhancing the existing approaches, so as to one day be
able to build a global fully robust solution to the problem.
Indeed many events occurring in natural scenes can disrupt
algorithms : occlusions, clutters, illumination changes, par-
ticular movements or pose changes. Many directions can
be investigated to overcome the failures coming from such
events, yet experts from computer vision, as well as from
pattern recognition, all stress the importance of reliable
features in entry to any higher order procedure.
In this article we focused on color and spatial information,
which can jointly be processed by extracting a color-texture
feature. To produce such a feature, some authors firstly
thought about applying texture extraction techniques to each
color plan. Jung [9] computes wavelets on RGB plans, and
so does Palm [11] with cooccurrence matrices. It is also
possible to use texture extraction by substituting gray-level
with colors, if you consider color as a continuous quantity.
These approaches must be carefully designed, because they
induce closeness between colors, which may not be relevant.
Chang [3] calculates color cooccurrences, by counting occur-
rences of neighbor colors, instead of neighbor gray levels,
and thereby induces no sense of closeness. Other methods do
not belong to the two previously cited schemes, like color
coherence vectors, spatial chromatic histograms [4], color
density [5], as well as the works of Paschos [12].
Color cooccurrences were retained as a first processing,

because spatial and color information are equally rendered
by this feature. Yet our purpose in this article is to add
property to such feature, so that it matches tracking pur-
poses. Occlusions or clutters cannot be handled by a feature
extraction technique because they depend on higher order
concepts such as object, scene or context, but not on pixels
values. Pose changes do not depend on feature extraction
methods efficiency, but on learning accuracy. At least, color
and texture should be learnt on several faces of the tracked
object to overcome this difficulty, but this is not our aim in
this article. Existing features, inluding cooccurrences, already
can partially deal with movement invariance.
Our contribution in this article allows our new feature to
cope with soft illumination changes, that are inevitable in
any natural scene. The principle relies on the addition of
weights for each color, using kernels centered on colors of
the target object. This new feature is by essence more adapted
to tracking issues, because it will be able to cope with soft
illumination changes by its own. To judge the efficiency of
our approach, two tracking aspects will be looked over :
precision and robustness. To carry out the tests, the feature
will be used inside a particle filter. Particle filters have proven
to be reliable tracking methods, and make no restrictive
hypotheses about the object model, so they are adapted to
feature evaluation.
This article is organized as follows, the first part will present
our contribution. Calculation of weighted color cooccur-
rences will be detailed and justified. As a second part,
a particle filter using our color-texture feature for visual
car tracking will be presented. In the third section some
experiments will be presented and discussed. Finally results
and procedure are summarized in a conclusion.

II. WEIGHTED COOCCURRENCE MATRICES

A. Cooccurrences

Cooccurrence matrices constitute one of the most popular
texture characterization techniques. They were introduced by
Haralick [8] for gray-level texture. The formula used for their
computation is the following :
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I is an image defined on D, p a pixel of this image, ~d a
translation vector, (i, j) a couple of gray levels and # is the
cardinal of a set. It simply consists in storing statistics about



grey levels topology. Note that in addition the computation
of the matrices is fast. The vectors ~d are generally chosen
so as to draw statistics in the 8-neighborhood of the pixel.
This leads to four directions imposed by the discrete space

D, ie ~d =
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)
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a texture at different scales may impose to adapt the norm
of ~d.
Adaptation to color is natural, the couple of gray levels can
be replaced by a couple of colors. Thus matrices characterize
colors, because if a color is absent from the processed
texture, its line and column within the matrix will be empty.
Spatial information is depicted by the number of occurrences
of a given couple of color.

B. Adding weights

As part of car-tracking application, cooccurrence matrices
from an image subwindow containing the car will constitute
an a priori model. To perform the track in the driving
sequence, we will afterwards need to judge the resemblance
of any subwindow from the current image with our model.
Such judgment can be obtained by comparing matrices from
the local subwindow to those of the model, therefore a metric
for the matrices is required. Cooccurrence matrices can be
considered as histograms, because the storing order of the
statistics bears no importance. Many existing distances, or
pseudo-distances, can be used for histograms : classical L1,
L2 or Lp Minkowski distances, Kullback-Leibler divergence,
χ2 distance, Hellinger distance or Bhattacharyya distance.
The latter one was retained for our study, because it is well-
known for its noise robustness [5]. Distance d is computed
from two normalized histograms h and h′, whose bins are
indexed by i :

d (h, h′) = 1−
M∑
i=1

√
hih′

i (2)

The two histograms must have the same number of bins M .
Such distance can be applied to the cooccurrence matrices,
after concatenation. Using this distance, it is clear that only
identical matrices will produce a null distance. However,
imagine that the matrices are computed upon two different
images of the same car, then only a slight change of illumi-
nation will produce very different matrices, therefore leading
to a distance closer to 1. In other words, cooccurrences
precision is a drawback for tracking purpose, because one
object can produce some matrices at some times of the
sequence, which cannot be matched to the reference ones.
Noticing this problem, we came up with the idea of changing
the occurrences increment. Indeed the goal to reach is that
colors of the same kind fall in the same bins, so as to
cope with slight illumination changes, that are unavoidable
in natural scenes. A naive solution would be to reduce the
number of bins M , but if so, the grid of the matrices is not
representative of the car color-texture. The proposed solution
is to give different voting weights to each color ci, depending
on whether this color is close to a representative color of the
car, denoted as c̃j . The sets of representative colors can be

limited to a very few colors, considering cars, the color of
the body is the most important, but red can be added for rear
lights and black for tires. We propose to compute the weights
wi using kernels centered on the representative colors :

wi =
NK∑
j=1

Kj (‖c̃j − ci‖) (3)

NK is the number of kernels equal to the number of
representative colors, and Kj() is a kernel. Kernels are
adequate for our problem, because colors very close to a
chosen representative color will be almost as important as
the chosen one, colors a little far from the chosen ones will
influence the increment and finally colors too far from the
model will all be silent. In our study we have considered the
use of three different kernels displayed over one dimension
on figure 1. These kernels mix more or less data. The most

Fig. 1. 1D representation of several kernels

mixing one is the rational kernel, the least mixing one is the
Epanechnikov kernel [5], and the compromise is the gaussian
kernel [14]. It is interesting to mix data if we want several
colors to have similar weights, even if this means adding
some noise.
The choice of the norm, or distance cf. equation 3, used for
comparing colors before running it through a kernel can be
discussed. We chose simple euclidian distance between RGB
coordinates. There may exist better distances, which can take
into account perceptual closeness of colors, but that is more
or less equivalent to changing the color space. The choice of
the color space relative to illumination invariance is beyond
the scope of this paper, as a consequence we restricted
ourselves to the usage of euclidian distance in the RGB
space. The efficiency of the weighted color cooccurrence
matrices (WCCM) for each different kernel will be examined
in section IV.

III. APPLICATION TO CAR TRACKING
To be able to judge the weighted cooccurrence matrices

feature, it must be used inside a tracking procedure. Particle
filters were retained as the tracking procedure to use for the
tests, because they are famous for their robustness, and also
because they induce no constraints on the object modeling.
In this section a short review of particle filters techniques is
given, as well as the implementation of it for car tracking.



A. Sequential Monte Carlo methods

The goal of particle filters, also known as sequential Monte
Carlo methods, is to estimate a random vector Xt, referred as
the state vector. This estimation becomes possible knowing a
second random vector Yt, referred as the observation vector.
As in many inference problems, the estimation of Xt is obtai-
ned using the estimation of the filtering density p (Xt|Y1:t),
where Y1:t corresponds to all available observations at time
t.
To perform such an estimation, some information is required.
First of all, the equations binding the state to its previous
realization and to the observation are required.

Xt = F (Xt−1,Wt) (4)
Yt = H (Xt, Vt) (5)

F and H are two non-linear functions and Wt and Vt are
two noises. As for a Kalman filter F and H should be linear
and Wt and Vt should be gaussian, that is why particle filter
is more powerful than Kalman filter, even if Kalman filter is
an exact method.
To perform the estimation the particle filter theory uses many
results of the probabilistic theory. The first one is the Monte
Carlo approximation, derived from the law of great numbers :

p̂ (Xt|Y1:t) =
N∑

i=1
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are N samples, or particles, drawn from a law
p (.|Y1:t), δ
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is the Dirac distribution centered on the
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The second result to be exploited is importance sampling.
Indeed it is unreasonable to think that one can sample from p
at any time. To overcome this difficulty, importance sampling
proposes to sample from another law q, whose support must
contain the support of p. Then, the samples will have to
be weighted by w

(i)
t = p(Xt|Y1:t)

q(Xt|Y1:t)
. Finally the estimation

becomes :
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In addition, under markovian hypotheses, it can be shown
that a recursive estimation of weights is possible using the
formula :

w
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The tracking procedure is now complete, but it is generally
added one more step : the resampling step, which allows
particle to be renewed, thereby avoiding the degeneracy
observed in the simple particle filter procedure. This step was
added by Gordon [7], and made the development of particle
filter popular. For more details about particle filters, and
resampling techniques, please refer to these works [2], [6].

B. Particle filter for car tracking

The first step is to design a state vector matching our
tracking purpose. Among the literature two representations
are commonly used : the bounding box and the contour. In
the case of the bounding box, the location of target center
along with the box dimensions compose the state. In the
case of contour, a spline is often used, and the control points
of the spline constitute the state. In our approach, we will
choose the bounding box state representation, which is easier
to manipulate :

Xt =


it
jt

heightt
widtht

 (9)

The center of the target is given by (it, jt), and its di-
mensions are (heightt, widtht). A particle is consequently a
template for image subwindow. Different sizes and positions
of subwindows will be generated by the filter.
The state evolution equation is often modeled as an AR-2
process, depending on both previous state and its velocity,
in this article we will restrict to a simple random walk :

Xt = Xt−1 +


N (0, σ1)
N (0, σ2)
N (0, σ3)
N (0, σ4)

 (10)

In addition this random walk will be chosen as the proposal
density q = p (Xt|Xt−1), which is called the prior density.
The prior density simplifies the calculation of the weights
w

(i)
t ∝ w

(i)
t−1p

(
Yt|X(i)

t

)
. In these conditions, the random

walk also has the advantage of making no hypothesis about
the object movement, therefore the sampling of the particles
is not restricted to some direction. It would be of course
in terms of tracking efficiency more interesting to sample
particles in the image, where the object is more likely
to lie. This is what is proposed by famous particle filters
implementations [15] [10]. Moreover the best choice for the
proposal density is p

(
X

(i)
t |X(i)

t−1, Yt

)
, see [6] for a proof

and [1] for an example of possible usage of the optimal
proposal density. Yet our purpose in this article is not to
design a better particle filter, but to design a better texture
characterization, so we want the algorithm efficiency to
mostly depend on that.
The nature of the observations Yt depends on the chosen
features, but they all take their origins within the image that
is observed at time t. In our case this feature is weighted
cooccurrence matrices. A model for the observation equation
is needed, which is equivalent to proposing a likelihood
p (Yt|Xt). This likelihood can be understood as the proba-
bility to observe the texture of the tracked car in the state-
corresponding subwindow, that is observed. To match this
idea, we propose the following expression of the likelihood :

p (Yt|Xt) ∝ exp
[
−λdmin (Yt, YRef )2

]
(11)



YRef is the set of reference matrices learnt on a subwindow
containing the car. Yt is the set of matrices computed on
the local subwindow. dmin is the minimal Bhattacharyya
distance between matrices of the two sets. Parameter λ helps
to strengthen the difference between subwindows containing
background, like road for instance, and subwindows contai-
ning the car. If subwindows containing road must return a
likelihood up to 0, 01 for instance, then the value of λ is
fixed.

C. Implementing weighted cooccurrences matrices

In this sub-section, a WCCM computation method in
reasonable time is proposed. A matrix computation time is
linear with respect to the analyzed image or subwindow size.
For each pixel NK weights must be calculated, whose cost
depends on the chosen kernel. These costs can be reduced to
a read operation time by generating a lookup table. This table
will contain precalculated quantified values of the chosen
kernel. Thus the overall computation time will decrease, even
if it will require more memory space.
Let Nq be the number of quantified colors, the matrix size is
then qxq. To maintain heterogeneity of colors one should
choose q between 256 and 128. Only a few colors are
selected to represent the object texture, so many cells of the
matrix will be empty. Memory space and computation time
can be saved by discarding the matrix zeros.
Let cref1 be the closest reference color to an observed color
ci. Let cref2 be the closest reference color to a second
observed color ci′ distant from ci by ~d. Since the cell
corresponding to (ci, ci′) is incremented by WiWi′ , it turns
out to be simplier to increment (cref1, cref2) with the same
value. Indeed (ci, ci′) is actually assimilated to (cref1, cref2)
with score WiWi′ . Usually 3 or 4 reference colors are enough
to fairly describe an object, consequently memory saving is
very significant. In addition Bhattacharyya distances compu-
tation coming afterwards is greatly simplified. One should
also add a reject class, that will take into account any color
too far from any reference color. Finally the size of the matrix
is reduced to (Nk + 1)× (Nk + 1).
Eventually, one can also wonder about how many matrices
should be computed. As seen in section II-A, the norm of
vector ~d is usually set to 1, and its orientation is set to one
of these four :

{
0, π

4 , π
2 , 3π

4

}
. This helps to cope with object

rotations. Instead of calculating four matrices, one for every
orientation, we propose to calculate only one, but to compare
it to 4 matrices, a priori learnt from the objet. The shortest
distance is kept. Comparing two matrices being far less costly
than building a matrix, overall computation time is thereby
reduced. In the fields of car tracking this rotation invariance
property is often unneeded, so the reference set can also be
limited to only one matrix.

IV. RESULTS AND DISCUSSIONS

Unlike many authors our new feature will be judged
upon tracking efficiency, not upon classification efficiency.
Along with tracking purposes, this feature was designed in
order to contain color-textural information even when slight

illumination changes occur, as it is always the case in natural
scenes. Two criteria will be examined : tracking precision
and tracking robustness. The tests performed in this section
have all been carried out using the particle filter described
in the previous section. Similar settings have been used for
all tests, notably the number of particles was set to 300,
σ1 = 10, σ2 = 10, σ3 = 1 and σ4 = 1. For such settings
and an average subwindow size of 15× 15, one image was
processed in 0.59 second. The algorithm was run on a laptop
using a 2.0 Ghz intel Core Duo CPU.

A. Tracking precision

It is always difficult to objectively measure the precision
of a tracking procedure. The best way to build some opinion
about it is still the human eye. On figure 2 the particle
filter was used with, Gabor features, classical cooccurrence
matrices, and weighted cooccurrence matrices (WCCM) with
three different kernels. Gabor features are often said to be
the best texture characterization method [13]. Comparing
methods through tracking efficiency is however not so usual.
The driving sequence used for the test has a resolution
of 240x320 pixels and is 486 frames long, approximately
corresponding to 31 seconds. However only the most part
of the sequence, during which appearance of the tracked car
mainly changes, is displayed on figure 2.
According to this figure, Gabor features can produce reliable
information about the car location for some seconds, but
when changes on the car appearance are getting coarser, it
loses track. Color cooccurrence method does perform some
tracking, which proves that cooccurrences contain reliable
information. However this tracking is very imprecise. As
you may see, only part of the car rear view and its shadow
is included in the bounding box. This kind of tracking
quality does not match computer vision goals. When looking
at tracking results from WCCM methods, it is clear that
the tracking efficiency is enhanced, because the car is still
globally contained by the bounding box. Concerning the
different kernels, it appears that Gaussian and Epanechnikov
ones both give very satisfying results, and that rational kernel
is a little less accurate at the end of the sequence. Note that
the filter has successfully come through slight illuminations
changes, scale changes and view changes.

B. Tracking robustness

Looking at figure 2, one may say that robustness is more
or less the same for the three different kernels used in the
weighted cooccurrence matrices computation. To further dis-
cuss this hypothesis, we propose the following figure 3. On
this figure, the evolution of the minimal distance measured
over all particles is displayed for each kernel. We have
divided these distances by the distance measured on the
second image, because in this image the rendering of the
car is very close to our model learnt on the first image. It
appears that the rational kernel curve is globally under that of
the Gaussian kernel, which is itself under the Epanechnikov
one. Having a curve with low values means that the model
is still close to the measurements made at each time of the
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Fig. 2. (a) : tracking with Gabor features, (b) : tracking with classical cooccurrence, (c) : tracking with epanechnikov WCCM, (d) : tracking with Gaussian
WCCM, (e) : tracking with rational WCCM

Fig. 3. Minimal distance evolution for different kernels. The distances
are computed between the model and WCCM extracted from subwindows
sampled by the particle filter.

sequence, in other words it means that the model is robust.
Consequently, rational kernel turns out to be more robust
than the two others. This observation can be explained by
the remark made in section II. Indeed rational kernel takes
into account more colors than the others, so it can more
easily detect something close to the model, but it may also
be misleading. Note that the variance of the rational kernel

curve is obviously higher, which may be related to its lack
of precision.
A second experiment confirms these results. From an image
containing a front view of a car, a sequence was constructed
using successive gamma functions for enlightening the first
image. On top of figure 4, the extent of this artificial
enlightening can be observed. The three different kernel
cooccurences were tested on this new sequence, with same
settings.

As figure 4 shows it, track is by far maintained longer
with rational kernel. Even if this result is very good, we
want to stress that such a coarse enlightening cannot be
handled by our feature in the general case. In this example,
the enlightening is homogeneous on the whole image, there
is no motion, and the car possesses color properties that
enables slight similarity to give relevant information about
the car location. However it does prove the efficiency of our
approach. Such artificial homogeneous enlightening is almost
never observed on natural conditions, usually enlightening
can be said to be locally homogeneous. Consequently this
enlightening may be harder to cope with than natural ones,
because more information is lost.
The tests performed in this section have brought to light a



Fig. 4. Tracking robustness to illumination changes

paradox between robustness and precision. Regarding our
experiments, we recommend the use of Gaussian kernel,
which is a good compromise between the two others.

V. CONCLUSIONS

In this article a new color-texture feature tuned for tracking
was introduced. It is built upon the color cooccurrence
matrices. If an object has to be modeled by this method,
it is possible to choose a few representative colors of the
object. Thus, we propose to weight the vote of colors in the
occurrence increment, depending on whether or not a color
is close to some of the representative chosen ones, hence the
name of weighted color cooccurrences for this new feature.
The weighting is performed thanks to a kernel. Three kernels
have been examined : rational, Gaussian and Epanechnikov.
The experiment proved that weighted cooccurrences out-
perform classical cooccurrences or Gabor features in a car
tracking context. In addition it appears that Epanechnikov
and Gaussian kernels are precise, but rational kernel is more
robust. As a consequence a compromise between robustness
and precision must be reached.
Thanks to weighted cooccurrence matrices, a reliable color-
texture source of information is available for tracking pur-
poses. Yet color and texture are not the only cues that
can be processed within an image. In future works, we
intend to propose data fusion between our new feature and
other features extracted from shape or movement analysis
techniques. Thanks to this fusion, we hope to be able to
analyze scenes at objects level, not only at pixels level, so
as to handle more disrupting events for tracking, notably
occlusions, clutters or pose changes.
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